EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均布随机参数结构非线性响应的概率密度演化

陈建兵 张圣涵

陈建兵, 张圣涵. 非均布随机参数结构非线性响应的概率密度演化[J]. 力学学报, 2014, 46(1): 136-144. doi: 10.6052/0459-1879-13-174
引用本文: 陈建兵, 张圣涵. 非均布随机参数结构非线性响应的概率密度演化[J]. 力学学报, 2014, 46(1): 136-144. doi: 10.6052/0459-1879-13-174
Chen Jianbing, Zhang Shenghan. PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144. doi: 10.6052/0459-1879-13-174
Citation: Chen Jianbing, Zhang Shenghan. PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 136-144. doi: 10.6052/0459-1879-13-174

非均布随机参数结构非线性响应的概率密度演化

doi: 10.6052/0459-1879-13-174
基金项目: 国家自然科学基金(11172210)和上海市曙光计划(11SG21)资助项目.
详细信息
    作者简介:

    陈建兵,教授,主要研究方向:随机动力学、地震工程与结构可靠度.E-mail:chenjb@tongji.edu.cn

  • 中图分类号: U260.17

PROBABILITY DENSITY EVOLUTION ANALYSIS OF NONLINEAR RESPONSE OF STRUCTURES WITH NON-UNIFORM RANDOM PARAMETERS

Funds: The project was supported by the National Natural Science Foundation of China (11172210) and the Shuguang Program of Shanghai City (11SG21).
  • 摘要: 首先考察了概率密度演化理论中的点演化和群演化与概率空间剖分的关系. 继而,讨论了点集筛选的基本准则. 在此基础上推广了点集偏差的概念,对非均匀、非正态的一般多维分布,提出了广义F 偏差(GF 偏差)的概念,避免了偏差计算的NP 难解问题. 探索了GF 偏差与EF 偏差的关系. 以GF 偏差最小化为准则,建议了概率空间最优剖分与点集重整的新策略. 结果表明,上述方法能够处理包含多达数10 个随机变量的结构动力响应概率密度演化分析问题. 最后,指出了需要进一步研究的问题.

     

  • Wen YK. Reliability and performance-based design. StructuralSafety, 2001, 23(4): 407-428
    Wen YK. Probabilistic aspects of earthquake engineering. In: BozorgniaY, Bertero VV, eds. Earthquake Engineering: from EngineeringSeismology to Performance-based Engineering, Part 7.CRC Press, Boca Raton, 2004
    Lutes LD, Sarkani S. Random Vibrations: Analysis of Structural andMechanical Systems. Amsterdam: Elsevier, 2004
    朱位秋. 随机振动. 北京:科学出版社,1992 (Zhu Weiqiu. RandomVibration. Beijing: Science Press, 1992 (in Chinese))
    徐伟. 非线性随机动力学的若干数值方法及应用. 北京: 科学出版社, 2013 (Xu Wei. Numerical Analysis Methods for StochasticDynamical Systems. Beijing: Science Press, 2013 (in Chinese))
    李杰. 随机结构系统——分析与建模. 北京:科学出版社,1996(Li Jie. Stochastic Structural Systems: Analysis and Modeling. Beijing:Science Press, 1996 (in Chinese))
    Schuëller GI. A state-of-the-art report on computational stochasticmechanics. Probabilistic Engineering Mechanics, 1997, 12(4): 197-321  
    程长明, 彭志科, 孟光. 一类非线性系统的随机振动频率响应分析研究. 力学学报, 2011, 43(5): 905-913 (Cheng Changming, PengZhike, Meng Guang. Random vibration frequency response analysisof nonlinear systems based on Volterra series. Chinese Journal ofTheoretical and Applied Mechanics, 2011, 43(5): 905-913 (in Chinese))
    Li J, Chen JB. Stochastic Dynamics of Structures. John Wiley &Sons, 2009
    李杰, 陈建兵. 随机动力系统中的概率密度演化方程及其研究进展. 力学进展, 2010, 40(2): 170-188 (Li Jie, Chen Jianbing. Advancesin the research on probability density evolution equations ofstochastic dynamical systems. Advances in Mechanics, 2010, 40(2):170-188 (in Chinese))
    Goller B, Pradlwarter HJ, Schu¨eller GI. Reliability analysis in structuraldynamics. Journal of Sound and Vibration, 2013, 332: 2488-2499  
    Li J, Yan Q, Chen JB. Stochastic modeling of engineering dynamicexcitations for stochastic dynamics of structures. Probabilistic EngineeringMechanics, 2012, 27(1): 19-28
    Chen JB, Sun WL, Li J, et al. Stochastic harmonic function representationof stochastic processes. Journal of Applied Mechanics,2013, 80(1): 011001-1-11
    Li J, Chen JB, Sun WL, et al. Advances of probability density evolutionmethod for nonlinear stochastic systems. Probabilistic EngineeringMechanics, 2012, 28: 132-142
    Chen JB, Ghanem R, Li J. Partition of the probability-assignedspace in probability density evolution analysis of nonlinear stochasticstructures. Probabilistic Engineering Mechanics, 2009, 24(1):27-42  
    Xiu DB. Fast numerical methods for stochastic computations. CommunComput Phys, 2009, 5: 242-272
    Xu J, Chen JB, Li J. Probability density evolution analysis of engineeringstructures via cubature points. Computational Mechanics,2012, 50: 135-156  
    Nobile F, Tempone R, Webster CG. A sparse grid stochastic collocationmethod for partial di erential equations with random inputdata. SIAM Journal on Numerical Analysis, 2008, 46(5): 2309-2345  
    Genz A. Fully symmetric interpolatory rules for multiple integrals.SIAM Journal on Numerical Analysis, 1986, 23(6): 1273-1283  
    Victoir N. Asymmetric cubature formulae with few points in highdimension for symmetric measures. SIAM Journal on NumericalAnalysis, 2004, 42(1): 209-227
    华罗庚, 王元. 数论在近似分析中的应用. 北京: 科学出版社,1978 (Hua Loo-Keng, Wang Yuan. Applications of Number Theoryto Numerical Analysis. Berlin: Springer, 1981)
    方开泰, 王元. 数论方法在统计中的应用. 北京: 科学出版社, 1996 (Fang Kaitai, Wang Yuan. Number-theoretic Methods inStatistics, London, Chapman & Hall, 1994)
    Chen JB, Zhang SH, Li J, Improving point selection in cubature bya new discrepancy. SIAM Journal on Scientific Computing, 2013,35(5): A2121-A2149
    Dick J, Pillichshammer F. Digital Nets and Sequences: DiscrepancyTheory and Quasi-Monte Carlo Integration. Cambridge: CambridgeUniversity Press, 2010
    Ma F, Zhang H, Bockstedte A, et al. Parameter analysis of the differentialmodel of hysteresis. Journal of Applied Mechanics, 2004,71: 342-349  
    Chen JB, Li J. Joint probability density function of the stochasticresponses of nonlinear structures. Earthquake Engineering and EngineeringVibration, 2007, 6(1): 35-47
  • 加载中
计量
  • 文章访问数:  1125
  • HTML全文浏览量:  32
  • PDF下载量:  958
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-07
  • 修回日期:  2013-08-14
  • 刊出日期:  2014-01-18

目录

    /

    返回文章
    返回