EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合网格的高阶间断有限元黏流数值解法

秦望龙 吕宏强 伍贻兆

秦望龙, 吕宏强, 伍贻兆. 基于混合网格的高阶间断有限元黏流数值解法[J]. 力学学报, 2013, 45(6): 987-991. doi: 10.6052/0459-1879-13-151
引用本文: 秦望龙, 吕宏强, 伍贻兆. 基于混合网格的高阶间断有限元黏流数值解法[J]. 力学学报, 2013, 45(6): 987-991. doi: 10.6052/0459-1879-13-151
Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. doi: 10.6052/0459-1879-13-151
Citation: Qin Wanglong, Lü Hongqiang, Wu Yizhao. HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 987-991. doi: 10.6052/0459-1879-13-151

基于混合网格的高阶间断有限元黏流数值解法

doi: 10.6052/0459-1879-13-151
基金项目: 国家自然科学基金(11272152)和航空科学基金(20101552018)资助项目.
详细信息
    通讯作者:

    吕宏强

  • 中图分类号: V211.3

HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF N-S EQUATIONS ON HYBRID MESH

Funds: The project was supported by the National Natural Science Foundation of China (11272152) and the Aeronautical Science Foundation of China (20101552018).
  • 摘要: 针对层流NS方程发展了混合网格上的高阶间断有限元方法,给出了物面边界高阶近似的具体步骤以及近物面弯曲单元的处理方法。对数值离散产生的非线性方程组采用牛顿迭代进行求解,每个牛顿循环采用预处理广义最小余量法求解产生的大型稀疏线性系统。使用该方法得到了典型算例的数值结果,并跟前人的计算结果进行了比较。计算结果表明,混合网格上应用高阶间断有限元方法求解黏性流动具有很好的应用前景。

     

  • Wang ZJ. High-order methods for the Euler and Navier--Stokes equations on unstructured grids. Progress in Aerospace Sciences, 2007, 43(1): 1-41
    Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier- Stokes equations. Journal of Computational Physics, 1997, 131(2): 267-279  
    Bassi F, Crivellini A, Rebay S, et al. Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations. Computers & Fluids, 2005, 34(2): 507-540
    Cockburn B, Shu C. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Journal of Computational Physics, 1998, 141(2): 199-224  
    Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis, 1998, 35(6): 2440-2463  
    Nguyen NC, Persson P, Peraire J. RANS solutions using high order discontinuous Galerkin methods. In: 45th AIAA Aerospace Sciences Meeting, AIAA 2007-914, 2007, 11080-11095
    Luo H, Xia YD, Li SJ, et al. A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids. Journal of Computational Physics, 2012, 231(16): 5489-5503  
    Zhu J, Qiu J. WENO Schemes and their application as limiters for RKDG methods based on trigonometric approximation spaces. Journal of Scientific Computing, 2012: 1-39
    吕宏强,伍贻兆,周春华等. 稀疏非结构网格上的亚音速流高精度数值模拟. 航空学报,2009, 30(2): 200-204 (Lu Hongqiang, Wu Yizhao, Zhou Chunhua, et al. High resolution of subsonic flows on coarse grids. Acta Aeronautica et Astronautica Sinca, 2009, 30(2): 200-204 (in Chinese))
    吕宏强,朱国祥,宋江勇等. 线化欧拉方程的高阶间断有限元数值解法研究. 力学学报,2011, 43(3): 621-624 (Lü Hongqiang, Zhu Guoxiang, Song Jiangyong, et al. High-order discontinuous Galerkin solution oflinearizedeuler equations. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3): 621-624 (in Chinese))
    Lu HQ. High-order discontinuous Galerkin solution of low-Re viscous flows. Modern Physics Letters B, 2009, 23(03): 309-312  
    张来平,刘伟,贺立新等. 基于静动态混合重构的 DG/FV 混合格式. 力学学报, 2010, 42(6): 1013-1022 (Zhang Laiping, Liu Wei, He Lixin, et al. A class of discontinuous Galerkin/finite volume hybrid schemes based on the "static re-construction" and "dynamic re-construction". Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1013-1022 (in Chinese))
    Yu J, Yan C. An artificial diffusivity discontinuous galerkin scheme for discontinuous flows. Computers & Fluids, 2013, 75(20): 56-71
    于剑, 阎超. Navier-Stokes方程间断Galerkin有限元方法研究.力学学报, 2010, 42(5): 962-969 (Yu Jian, Yan Chao. Study on discontinuous galerkin method for Navier-Stokes equations. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 962-969 (in Chinese))
    Landmann B, Kessler M, Wagner S, et al. A parallel, high-order discontinuous Galerkin codes for laminar and turbulent flows. Computers & Fluids, 2008, 37(2): 427-438
    Saad Y, Schultz MH. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869  
    Lübon C, Keβler M, Wagner S, et al. High-order boundary discretization for discontinuous Galerkin codes. In: Proc. of 24th AIAA Applied Aerodynamics Conference, AIAA 2006-2822, 2006, 69-81
  • 加载中
计量
  • 文章访问数:  1479
  • HTML全文浏览量:  178
  • PDF下载量:  859
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-13
  • 修回日期:  2013-10-09
  • 刊出日期:  2013-11-18

目录

    /

    返回文章
    返回