EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微流体装置的微血管网内红细胞流动和分布特性的研究

李芬 胡瑞清 山田崇 贺缨 小野直树

李芬, 胡瑞清, 山田崇, 贺缨, 小野直树. 基于微流体装置的微血管网内红细胞流动和分布特性的研究[J]. 力学学报, 2014, 46(1): 1-9. doi: 10.6052/0459-1879-13-139
引用本文: 李芬, 胡瑞清, 山田崇, 贺缨, 小野直树. 基于微流体装置的微血管网内红细胞流动和分布特性的研究[J]. 力学学报, 2014, 46(1): 1-9. doi: 10.6052/0459-1879-13-139
Li Fen, Hu Ruiqing, Yamada Takashi, He Ying, Ono Naoki. THE OBSERVATIONS OF THE FLOW BEHAVIOR AND DISTRIBUTION OF RED BLOOD CELLS FLOWING THROUGH A MICRO-NETWORK CHANNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 1-9. doi: 10.6052/0459-1879-13-139
Citation: Li Fen, Hu Ruiqing, Yamada Takashi, He Ying, Ono Naoki. THE OBSERVATIONS OF THE FLOW BEHAVIOR AND DISTRIBUTION OF RED BLOOD CELLS FLOWING THROUGH A MICRO-NETWORK CHANNEL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 1-9. doi: 10.6052/0459-1879-13-139

基于微流体装置的微血管网内红细胞流动和分布特性的研究

doi: 10.6052/0459-1879-13-139
基金项目: 中日医学协会国际合作项目;中国博士后科学基金项目(2011491478);安徽自然科学基金项目(11040606M09)和中央高校基本科研业务专项资金项目(WK2100023009)资助.
详细信息
    作者简介:

    贺缨,教授,主要研究方向:血流动力学,生物传热传质,沸腾传热.

  • 中图分类号: O359+.2

THE OBSERVATIONS OF THE FLOW BEHAVIOR AND DISTRIBUTION OF RED BLOOD CELLS FLOWING THROUGH A MICRO-NETWORK CHANNEL

Funds: The project was supported by International Collaborative Research Fund of Japan-China Medical Association, China's Post-doctoral Science\linebreak Fund (2011491478), Anhui Provincial Natural Science Foundation (11040606M09) and the Fundamental Research Funds for the Central Universities (WK2100023009).
  • 摘要: 实体肿瘤血管具有扩张、扭曲、不规则分支以及分支间连接絮乱等特征. 为了考察这些特征对血液流动的影响,将肿瘤血管简化为垂直相互贯通的微血管网,借助微流体实验装置,以一定浓度的红细胞悬液作为流动介质,研究红细胞在微血管网中的流动和分布特性. 具体实验方案如下:首先,采用软刻蚀技术,在聚二甲基硅氧烷(polydimethylsiloxane, PDMS)上加工出微血管网;然后,采用微注射泵控制微血管网入口处的红细胞悬液流量,使用倒置显微镜和高速摄影系统观察并记录实验过程;最后,通过Matlab 软件包Piv-lab 及高速摄影配套软件对获得的视频图像进行处理,提取红细胞在微血管网中的流动和分布数据. 数据处理结果显示,红细胞在微血管网中的流动和分布特性受悬液内的红细胞压积(hematocit, Hct)的影响. 红细胞随悬液Hct 的不同呈现2 种运动轨迹:一种为仅沿着轴向微管道流动;另一种是从轴向微管道流入并穿过径向微管道,再进入另一侧的轴向微管道. 另外,入口流量相同时,红细胞在微血管网中的流动速度随Hct 变化呈现不同,Hct 为3% 和5% 的红细胞速度要明显高于Hct 为1% 的红细胞速度.

     

  • McDonald DM, Choyke PL. Imaging of angiogenesis: From microscope to clinic. Nature Medicine, 2003, 9(6): 713-725  
    Joanne RL, Thornas CS, Eva MS, et al. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Research, 1991, 51: 265-273
    游捷. 肿瘤微环境和血管正常化在中西医结合治疗肿瘤中的作用机制探讨. 中国中西医结合杂志, 2011, 31(8): 1127-1131 (You Jie. Study on the tumor microenvironment and tumor vascular normalization in integrative treatment of tumor by Chinese medicine and western medicine. Chinese Journal of Integrated Traditional and Weatern Medicine, 2011, 31(8): 1127-1131 (in Chinese))
    Siemann DW. Vascular-targeted Therapies in Oncology. New York: John Wiley &Son, Ltd, 2006
    Munn LL. Aberrant vascular architecture in tumors and its importance in drug-based therapies. Therapeutic Focus, 2003, 5(9): 396-403
    Koehl GE, Gaumann A, Geissler EK. Intravital microscopy of tumor angiogenesis and regressionin the dorsal skin fold chamber: Mechanistic insights and preclinical testing of therapeutic strategies.Clin Exp Metastasis, 2009, 26: 329-344  
    Munn LL, Kamoun W, Dupin M, et al. Modeling structural and functional adaptation of tumor vessel networks during antiangiogenic therapy. In: Jackson TL, ed. Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level Aspects and Implications. New York: Springer, 2012: 213-233
    Baish JW, Gaitz Y, David AB, et al. Role of tumor vascular architecture in nutrient and drug delivery: An invasion-percolation-based network model. Mirco Res, 1996, 51: 27-346
    Baish JW, Netti PA, Jain RK. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvascular Research, 1997, 53: 128-141  
    Chapman SJ, Sipley RJ, Jawad R. Multiscale modeling of fluid transport in tumors. Bulletin Math Biol, 2008, 70: 2334-2357  
    Pozrikidis C. Axisymmetric motion of a file of red blood cells through capillaries. Physics of Fluids, 2005, 17: 031503-1-14  
    Obrist BD, et al. Red blood cell distribution in simplified capillary networks. Phil Trans R Soc A, 2010, 368: 2897-2918  
    Dhawdal A, Wiggs B, Doerschuk CM, et al. Effects of anatomic variability on blood flow and pressure gradients in the pulmonary capillaries. Journal of Applied Physiology, 1997, 83: 1711-1720
    Huang YQ, Doerschuk CM, Kamm RD. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J Appl Physiol, 2001, 90: 545-564
    Byung HJ, Linda M, Van L, et al. Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer. Journal of Microelectromechanical Systems, 2000, 9(1): 76-81  
    Wang GJ, Ho KH, Hsu SH, et al. Microvessel scaffold with circular microchannels by photoresist melting. Biomed Microdevices, 2007, 9:657-663.  
    Whitesides GM, Ostuni E, Takayama S. Soft lithography in biology and biochenmistry. Annu Rev Biomed Eng, 2001, 3: 335-373  
    Srigunapalan S, Lam C, Wheeler AR, et al. A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidic, 2011, 5: 013409(1-9)  
    Chen YC, Chen GY, Lin YC, et al. A lab-on-a-chip capillary network for red blood cell hydrodynamics. Microfluid Nanofluid, 2010, 9: 585-591  
    Lee SS, Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices, 2009, 11: 1021-1027
    Fujiwara H, Ishikawa T, Lima Ret al. Red blood cell motions in high-hemotocrit blood flowing through a stenosed microchannel. J Biomech, 2009, 42: 838-843  
    Tomaiuolo G. Start-up shape dynamics of red blood cells in microcapillary flow. Microvascular Research, 2011, 82: 35-41  
    Marcucci F, Corti A. How to improve exposure of tumor cells to drugs -Promoter drugs increase tumor uptake and penetration of effector drugs. Advanced Drug Delivery Reviews, 2011, 64: 53-68
    Chen B, Guo F, Xiang H. Visualization study of motion and deformation of red blood cells in a microchannel with straight, divergent, and convergent sections. J Biol Phys, 2011, 37: 429-440  
    Zou Q, He X. On pressureand and velocity boundary conditions for the lattice Boltzman BGK model. Phys Fluids, 1997, 8: 1591-1597
    Maeda N. Erythrocyte rehology in microcirculation. Jpn J Physiol, 1996, 46: 1-14  
    Mchedlishvili G, Maeda N. Blood flow structure related to red cell flow: A determinant of blood fluidity in narrow microvessels. Jpn J Physiol, 2001, 51: 19-30  
    Goldsmith HL, Cokelet GR, Gaehtgens PR. Fahraeus: Evolution of his concepts in cardiovascular physiology. Am J Physiol, 1989, 257: H1005-H1015
    Tomaiuolo G, GuidoS, Cassinese A. Analysis of red blood cell deformation in a microfluidic device. In: Proc. ASME 2010 Global Cong. On Nanoeng. For Med. & Bio., 2010, NEMB2010-13348-1-2
    前田信治. 赤血球の微小循環とレオロジー. ながれ, 2002, 21: 129-134 (Maeda N. Microcirculation of erythrocytes in relation to their rheological properties. Nagare (Fluid Flow), 2002, 21: 129-134 (in Japanese))
    吴洁,许世雄,赵改平等. 实体肿瘤血液动力学的三维数值模拟. 医用生物力学,2006,13: 8-13 (Wu Jie, Xu Shixiong, Zhao Gaiping, et al. 3D Numerical simulation of hemodynamics in solid tumor. Journal of Medical Biomechanics, 2006, 13: 8-13 (in Chinese))
    吴洁,丁祖荣,蔡彦等. 血管抑素与内皮抑素作用下抗血管生成治疗对肿瘤血管网与微环境影响的模拟研究. 应用数学和力学,2011, 32(4): 417-427(Wu Jie, Ding Zurong, Cai Yan, et al. Simulation of tumor microvasculature and microenvironment response to anti-angiogenictreatment by angiostatin and endostatin. Applied Mathematics and Mechaning, 2011, 32(4): 417-427 (in Chinese))
    Chaplain MAJ, McDougall SR, Anderson ARA. Blood flow and tumour-induced angiogenesis: dynamically adapting vascular networks. In: Jackson TL, ed. Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level Aspects and Implications. New York: Springer, 2012: 67-212
    Wu MJ, Xiao F, Johnson-Paben RM, et al. Single and two phase flow in microfluidic porous media analogs based on Voronoi tessellation. Lab on a Chip, 2012, 12: 253-261  
    Leble V, Lima R, Dias R, et al. Asymmetry of red blood cell motions in a microchannel with a divergent and convergent bifurcation. Biomcirofluidics, 2011, 5: 044120-1-15  
  • 加载中
计量
  • 文章访问数:  1207
  • HTML全文浏览量:  18
  • PDF下载量:  1721
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-06
  • 修回日期:  2013-10-17
  • 刊出日期:  2014-01-18

目录

    /

    返回文章
    返回