Robinson J. Four-node quadrilateral stress membrane element with rotational stiffness. Int J Meth Engng, 1980, 16: 1567-1569
|
Mohr GA. Finite element formulation by nested interpolations: Application to drilling freedom problem. Comput & Struct, 1982, 15: 185-190
|
Allman DJ. A compatible triangular element including vertex rotations for plane elasticity analysis. Comput & Struct, 1984, 19: 1-8
|
Bergan PG, Felippa CA. A triangle membrane eleemnt with rotational degrees of freedom. Comp Meth Appl Mech Engng, 1985, 50: 25-69
|
Cook RD. On the Allman triangular and a related quadrilateral element. Comput & Struct, 1986, 22: 1065-1067
|
MacNeal RH, Harder RL. A proposed standard set of problems to test finite element accuracy. Finite Element in Analysis and Design, 1985, 1: 3-20
|
Yunus SM, Pawlak TP, Cook RD. Solid elements with rotational degrees of freedom: Part Ⅰ:hexahedron elements. Int J Num Meth Engng, 1991, 31: 573-592
|
Pawlak TP, Yunus SM, Cook RD. Solid elements with rotational degrees of freedom: Part Ⅱ:tetrahedron elements. Int J Num Meth Engng, 1991, 31: 593-610
|
Sekiguchi M, Kikuchi N. Re-examination of membrane element with drilling freedom. In: CD-ROM 5th World Congress on Comput Mech (WCCMV), Vienna, 2002
|
刘红, 唐立民. 带旋转自由度的拟协调平面元. 计算结构力学及其应用, 1990, 7(4): 23-31 (Liu Hong, Tang Limin. The quasi-confirming plane elements with rotational degree of freedom. Computational Structural Mechanics and Applications, 1990, 7(4): 23-31 (in Chinese))
|
文学章, 龙驭球, 何放龙. 带旋转自由度的广义协调三角形膜元. 工程力学, 2002, 19(6): 11-15 (The generalized confirming triangular membrane elements with rotational degree of freedom. Engineering Mechanics, 2002, 19(6): 11-15 (in Chinese))
|
须寅, 龙驭球. 应用广义协调条件构造具有旋转自由度的三角形膜元. 工程力学, 1993, 10(2): 31-39 (Xu Yin, Long Yuqiu. Triangular membrane elements with rotational degree of freedom by using the generalized confirming condition. Engineering Mechanics, 1993, 10(2): 31-39 (in Chinese))
|
Cook RD. A plane hybrid element with rotational D.O.F and adjustable stiffness. Int J Num Meth Engng, 1987, 24: 1499-1508
|
Yunus SM, Saigal S, Cook RD. On improved hybrid finite elements with rotational degrees of freedom. Int J Num Meth Engng, 1989, 28: 785-800
|
Groenwold AA, Xiao QZ, Theron NJ. Accurate solution of traction free boundaries using hybrid stress membrane elements with drillings degrees of freedom. Computers & Structures, 2004, 82: 2071-2081
|
Pan YS, Chen DP. A 4-node membrane element with rotational degree of freedom based on hybrid stress model. In: Proc of EPMESC'IV, 1992, II: 700-706
|
Sze KY, Ghali A. A hybrid brick element with rotational degrees of freedom. Computational Mechanics, 1993, 12: 147-163
|
Sze KY, Chen WJ, Cheung YK. An efficient quadrilateral plane element with drilling degree of freedom using orthogonal stress modes. Comput & Struct, 1992, 42(5): 695-705
|
Sze KY, Sim YS, Soh Ak. A hybrid stress quadrilateral shell element with full rotational DOFs. Int J Num Meth Engng, 1997, 40: 1785-1800 3.0.CO;2-H">
|
王安平, 田宗漱. 具有一个无外力圆弧边含转动自由度的杂交应力元. 中国科学院研究生院学报, 2007, 24(1): 25-33 (Wang Anping, Tian Zongshu. Special hybrid stress membrane element with drilling degrees of freedom and a traction-free circular boundary. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(1): 25-33 (in Chinese))
|
Wang AP. A quadrilateral membrane hybrid stress element with drilling degrees of freedom. Acta Mechanica Sinica, 2012, 28(5): 1367-1373
|
Tong P, Pian THH. A variational principle and the Convergence of a finite element method based on assumed stress distribution. Int J Solids Struct, 1969, 5: 436-472
|
Tian ZS. New hybrid solid element with traction-free cylindrical surface. Acta Mechanical Sinica. 1989, 21: 373-378
|
铁摩辛柯, 古地尔. 弹性理论. 徐芝纶译. 北京: 高等教育出版社, 1990 (Timoshenko SP, Goodier JN. Theory of Elasticity. Xu Zhilun transl. Beijing: Higher Education Press, 1990 (in Chinese))
|
Pian THH, Tong P. Relations between incompatible displacement model and hybrid stress model. Int J Num Mech Engng, 1986, 22: 173-181
|
Hengst H. Beitrag zue beurteilung des spannungszustandes einer qeluchten schreibe, Z. angew. Math Mech, 1938, 18: 44-48 (in German)
|
Pian THH, Tian ZS. Hybrid solid element with a traction-free cylindrical surface. In: Proc. of ASME Symposium on Hybrid and Mixed Finite Element Models, 1986. 89-95
|