EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M积分与夹杂/缺陷弹性模量的显式关系

于宁宇 李群

于宁宇, 李群. M积分与夹杂/缺陷弹性模量的显式关系[J]. 力学学报, 2014, 46(1): 87-93. doi: 10.6052/0459-1879-13-097
引用本文: 于宁宇, 李群. M积分与夹杂/缺陷弹性模量的显式关系[J]. 力学学报, 2014, 46(1): 87-93. doi: 10.6052/0459-1879-13-097
Yu Ningyu, Li Qun. THE EXPLICIT RELATION BETWEEN THE M-INTEGRAL AND THE ELASTIC MODULI OF INCLUSION/DAMAGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 87-93. doi: 10.6052/0459-1879-13-097
Citation: Yu Ningyu, Li Qun. THE EXPLICIT RELATION BETWEEN THE M-INTEGRAL AND THE ELASTIC MODULI OF INCLUSION/DAMAGES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1): 87-93. doi: 10.6052/0459-1879-13-097

M积分与夹杂/缺陷弹性模量的显式关系

doi: 10.6052/0459-1879-13-097
基金项目: 国家自然科学基金青年项目(11202156);国家自然科学基金重点项目(10932007)和国家自然科学基金创新团体(11021202)资助项目.
详细信息
    作者简介:

    李群,副教授,主要研究方向:断裂与损伤力学.E-mail:qunli@mail.xjtu.edu.cn

  • 中图分类号: O346

THE EXPLICIT RELATION BETWEEN THE M-INTEGRAL AND THE ELASTIC MODULI OF INCLUSION/DAMAGES

Funds: The project was supported by the National Natural Science Foundation of China (11202156, 10932007, 11021202).
  • 摘要: M积分在材料构型力学中表征着缺陷自相似扩展的能量释放率,而有效弹性模量下降量在传统损伤力学中是一个具有内变量属性的损伤参数. 探讨了两者之间的特定关系,以此为材料构型力学与损伤力学搭建桥梁.借助穆斯海里什维利(Muskhelishvili)复势函数方法获取无限大弹性平面含圆形夹杂的弹性场解,根据M 积分的复势函数解析表达式得到M 积分与夹杂弹性模量的显式表达式. 随后通过有限元分析,对含复杂缺陷群的弹塑性材料进行数值模拟,结果表明内部缺陷区域的有效弹性模量下降与M 积分存在着特定关系. 基于此,提出利用材料构型力学中的外变量参数(M 积分)来替代损伤力学中的内变量参数(弹性模量下降量)描述材料的缺陷演化.

     

  • Chen YZ. A technique for evaluating the stress intensity factors by means of the M-integral. Engineering Fracture Mechanics, 1986, 23: 777-780  
    Choi NY, Earmme YY. Evaluation of stress intensity factors in circular arc-shaped interfacial crack using L integral. Mechanics of Materials, 1992, 14: 141-153  
    Chen YZ, Lee KY. Analysis of the M-integral in plane elasticity. Journal of Applied Mechanics, 2004, 71: 572-574  
    李群,王芳文. 含微缺陷各向异性复合材料中的J_k积分和M积分. 西安交通大学学报, 2008, 42(1): 60-64 (Li Qun, Wang Fangwen. Jk-integral and M-integral in anisotropic composite material containing multiple defects. Journal of Xi'an Jiaotong University, 2008, 42(1): 60-64 (in Chinese))
    郭树祥, 许希武. 任意多椭圆孔多裂纹无限大板的应力强度因子与M积分. 固体力学学报, 2006, 27(1): 7-14 (Guo Shuxiang, Xu Xiwu. The SIFS and M-integral of the infinite plane with multiple elliptical holes and cracks. Acta Mechanica Solida Sinica, 2006, 27(1): 7-14 (in Chinese))
    王德法, 高小云, 师俊平. 三维固体问题中M积分与总势能变化关系的研究. 水利与建筑工程学报, 2009, 7(1): 36-38 (Wang Defa, Gao Xiaoyun, Shi Junping. Study on relation between M-integral and change of total potential energy in three-dimensional Solids. Journal of Water Resources and Architectural Engineering, 2009, 7(1): 36-38 (in Chinese))
    Chen YH, Hasebe N. A consistency check for strongly interacting multiple crack problems in isotropic, bimaterial and orthotropic bodies. International Journal of Fracture, 1998, 89: 333-353  
    Chen YH. M-integral analysis for two-dimensional solids with strongly interacting cracks, Part I: In an infinite brittle solids. International Journal of Solids and Structures, 2001, 38: 3193-3212  
    Chang JH, Chien AJ. Evaluation of M-integral for anisotropic elastic media with multiple defects. International Journal of Fracture, 2002, 114: 267-289  
    Chang JH, Wu WH. Using M-integral for multi-cracked problems subjected to nonconservative and nonuniform crack surface tractions. International Journal of Solids and Structures, 2011, 48: 2605-2613  
    Hu YF, Chen YH. M-integral description for a strip with two microcracks before and after coalescence. Journal of Applied Mechanics, 2009, 76: 061017  
    Wang FW, Chen YH. Fatigue damage driving force based on the M-integral concept. Procedia Engineering, 2010, 2: 231-239  
    Hui T, Chen YH. The M-integral analysis for a nano-inclusion in plane elastic materials under uni-axial or bi-axial loadings. Journal of Applied Mechanics, 2010, 77: 021019  
    Hu YF, Li Q, Shi JP, et al. Surface/interface effect and size/configuration dependence on the energy release in nanoporous membrane. Journal of Applied Physics, 2012, 112: 034302  
    Muskhelishvili NI, Some basic problems of the mathematical theory of elasticity. Leyden: Noordhoff, 1953
    Sendeckyj GP. Elastic Inclusion Problems in Plane Elastostatics. Int J Solids Struct, 1970, 6: 1535-1543  
    Ru CQ. A new method for an inhomogeneity with stepwise graded interphase under thermomechanical loadings. J Elasticity, 1999, 56: 107-127  
    Banerjee B, Adams DO. On predicting the effective elastic properties of polymer bonded explosives using the recursive cell method. International Journal of Solids and Structures, 2004, 41: 481-509  
    Carka D, Landis CM. On the path-dependence of the J-integral near a stationary crack in an elastic-plastic material. Journal of Applied Mechanics, 2011, 78: 011006  
    Li Q, Hu YF, Chen YH. On the physical interpretation of the M-integral in nonlinear elastic defect mechanics. International Journal of Damage Mechanics, 2012, doi: 10.1177/1056789512456860
  • 加载中
计量
  • 文章访问数:  1060
  • HTML全文浏览量:  24
  • PDF下载量:  900
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-01
  • 修回日期:  2013-05-28
  • 刊出日期:  2014-01-18

目录

    /

    返回文章
    返回