EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自振荡凝胶的动力学模型及可控性分析

王鹏飞 刘少宝 周进雄 卢天健 徐峰

王鹏飞, 刘少宝, 周进雄, 卢天健, 徐峰. 自振荡凝胶的动力学模型及可控性分析[J]. 力学学报, 2013, 45(6): 888-896. doi: 10.6052/0459-1879-13-073
引用本文: 王鹏飞, 刘少宝, 周进雄, 卢天健, 徐峰. 自振荡凝胶的动力学模型及可控性分析[J]. 力学学报, 2013, 45(6): 888-896. doi: 10.6052/0459-1879-13-073
Wang Pengfei, Liu Shaobao, Zhou Jinxiong, Lu Tianjian, Xu Feng. DYNAMIC MODEL OF SELF-OSCILLATING GELS AND THE CONTROLLABILITY ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 888-896. doi: 10.6052/0459-1879-13-073
Citation: Wang Pengfei, Liu Shaobao, Zhou Jinxiong, Lu Tianjian, Xu Feng. DYNAMIC MODEL OF SELF-OSCILLATING GELS AND THE CONTROLLABILITY ANALYSIS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 888-896. doi: 10.6052/0459-1879-13-073

自振荡凝胶的动力学模型及可控性分析

doi: 10.6052/0459-1879-13-073
基金项目: 国家自然科学基金(11072185, 11372243)、高等学校学科创新"111"引智计划项目(B06024)、新世纪人才计划、中国南方智谷引进创新团队资助项目.
详细信息
    通讯作者:

    卢天健,教授,主要研究方向:固体力学、软物质力学等。E-mail:tjlu@mail.xjtu.edu.cn;徐峰,教授,主要研究方向:生物力学、组织工程等。E-mail:fengxu@mail.xjtu.edu.cn

    卢天健,教授,主要研究方向:固体力学、软物质力学等。E-mail:tjlu@mail.xjtu.edu.cn;徐峰,教授,主要研究方向:生物力学、组织工程等。E-mail:fengxu@mail.xjtu.edu.cn

  • 中图分类号: O0341

DYNAMIC MODEL OF SELF-OSCILLATING GELS AND THE CONTROLLABILITY ANALYSIS

Funds: The project was supported by the National Natural Science Fundation of China(11072185, 11372243), National 111 Project of China (B06024), New Century Talents Program and "Zhi Gu" Innovation program of Southern China.
  • 摘要: 自振荡凝胶是一类在Belousov-Zhabotinsky化学反应(BZ反应)驱动下能够产生周期性收缩和膨胀大变形的智能软材料,简称为BZ凝胶,在微型激励器、传感器、药物释放、仿生材料等领域有着广泛的应用前景。基于BZ化学反应的Oregonator模型以及凝胶变形的力平衡方程,建立了由二阶微分方程表示的BZ凝胶的简化动力学模型,并通过对BZ凝胶的振荡动力学模型的分析,发现其在动力学相轨迹空间内呈现出稳定的周期性极限环振荡,进而利用改进的打靶法求得了BZ凝胶的振荡周期解,系统研究了反应物浓度、催化剂效率和链状高分子的亲水性等可控系统参数对其振荡形式、周期和幅值的影响。结果表明,只有在特定的系统参数取值下,BZ凝胶才能发生持续的周期性振荡;随着这些参数的改变,BZ凝胶的振荡形式、周期和幅值均产生规律性变化。证明了对自振荡凝胶实施周期性调控在理论上是可行的。

     

  • Ahn S, Kasi R, Kim S, et al. Stimuli-responsive polymer gels. Soft Matter, 2008, 4(1): 1151-1157
    MacKintosh F, Levine A. Nonequilibrium mechanics and dynamics of motor-activated gels. Physical Review Letters, 2008, 100(1): 018104-4  
    Yashin VV, Kuksenok O, Dayal P, et al. Mechano-chemical oscillations and waves in reactive gels. Reports on Progress in Physics: Physical Society, 2012, 75(6): 066601-4  
    申迎华,刘慧敏,李国卿等. pH响应型P(HEMA/MAA)纳米微凝胶分散液的凝胶化行为和流变性能. 物理化学学报, 2011, 27(8): 1919-1925 (Shen Yinghua, Liu Huimin, Li Guoqing, et al. Rheological properties and gelation of pH-responsive P(HEMA/MAA) nano-microgel dispersions. Acta Physico-Chimica Sinica, 2011, 27(8): 1919-1925 (in Chinese))
    Wang R, Xiang T, Yue W, et al. Preparation and characterization of pH-sensitive polyethersulfone hollow fiber membranes modified by poly(methyl methylacrylate-co-4-vinyl pyridine) copolymer. Journal of Membrane Science, 2012, 423: 275-283
    赵义平,陈莉,张玉欣等. 光-温度双重响应凝胶的制备及温敏性能研究.功能材料, 2011, 42(1): 161-170 (Zhao Yiping, Chen Li, Zhang Yuxin, et al. Fabrication and wettability studies of ZnO nano material modified paint coating. Journal of Functional Materials, 2011, 42(1): 161-170 (in Chinese))
    Chen D, Sun K, Mu H, et al. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system. International Journal of Nanomedicine, 2012, 7: 2621-2630
    Depaoli V, Lacerda S, Spinu L, et al. Effect of an oscillating magnetic field on the release properties of magnetic collagen gels. Langmuir, 2006, 22(13): 5894-5899  
    Szabo D, Szeghy G, Zrinyi M. Shape transition of magnetic field sensitive polymer gels. Macromolecules, 1998, 31(19): 6541-6548  
    Ge J, Neofytou E, Cahill T, et al. Drug release from electric field responsive nanoparticles. ACS Nano, 2012, 6(1): 227-233  
    Hikmet R, Kemperman H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature, 1998, 392(6675): 476-479  
    Techawanitchai P, Ebara M, Idota N, et al. Light-induced spatial control of pH-jump reaction at smart gel interface. Colloids and Surfaces B-biointerfaces, 2012, 99(1): 53-59
    Okeyoshi K, Yoshida R. Hydrogen generating gel systems induced by visible light. Soft Matter, 2009, 5(21): 4118-4123  
    Lin G, Chang S, Kuo C, et al. Free swelling and confined smart hydrogels for applications in chemomechanical sensors for physiological monitoring. Sensors and Actuators B: Chemical, 2009, 136(1): 186-195  
    Hu Z, Chen Y, Wang C, et al. Polymer gels with engineered environmentally responsive surface patterns. Nature, 1998, 393(6681): 149-152  
    Yoshida R. Design of self-oscillating gels and application to biomimetic actuators. Sensors, 2010, 10(3): 1810-1822  
    Santulli C. Mechanical charecterisation of N-isopropylacrylamide (NIPA) gels for use in smart actuators. Malaysian Polymer Journal, 2011, 6(1): 39-50
    Beebe D, Moore J, Bauer J, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 2000, 404(6778): 588-590  
    Yoshida R, Takahashi T, Yamaguchi T, et al. Self-oscillating gel. Journal of the American Chemical Society, 1996, 118(21): 5134-5135  
    Yoshida R, Takahashi T, Yamaguchi T, et al. Self-oscillating gels. Advanced Materials, 1997, 9(2): 175-178  
    Wenk J, Sun K, Zhang Z, et al. Regional left ventricular myocardial contractility and stress in a finite element model of posterobasal myocardial infarction. Journal of Biomechanical Engineering, 2011, 133(4): 044501  
    Maeda S, Hara Y, Yoshida R, et al. Active polymer gel actuators. International Journal of Molecular Sciences, 2010, 11(1): 52-66  
    Maeda S, Hara Y, Yoshida R, et al. Design of self-oscillating gel actuators for aiming at chemical robot. Kobunshi Ronbunshu, 2008, 65(10): 634-640  
    Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large deformation in polymeric gels. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1779-1793  
    Sun J, Zhao X, Illeperuma WR, et al. Highly stretchable and tough hydrogels. Nature, 2012, 489(7414): 133-136  
    Hong W, Zhao X, Suo Z. Large deformation and electrochemistry of polyelectrolyte gels. Journal of the Mechanics and Physics of Solids, 2010, 58(4): 558-577  
    Hong W, Zhao X, Suo Z. Formation of creases on the surfaces of elastomers and gels. Applied Physics Letters, 2009, 95(11): 111901  
    Hu Y, Suo Z. Viscoelasticity and poroelasticity in elastomeric gels. Acta Mechanica Solida Sinica, 2012, 25(5): 441-458  
    Zhang J, Zhao X, Suo Z, et al. A finite element method for transient analysis of concurrent large deformation and mass transport in gels. Journal of Applied Physics, 2009, 105(9): 093522  
    Park H, Suo Z, Zhou J, et al. A dynamic finite element method for inhomogeneous deformation and electromechanical instability of dielectric elastomer transducers. International Journal of Solids and Structures, 2012, 49(15): 2187-2194
    Lu T, Suo Z. Large conversion of energy in dielectric elastomers by electromechanical phase transition. Acta Mechanica Sinica, 2012, 28(4): 1106-1114  
    Qu S, Suo Z. A finite element method for dielectric elastomer transducers. Acta Mechanica Solida Sinica, 2012, 25(5): 459-466  
    Yashin VV, Balazs AC. Pattern formation and shape changes in self-oscillating polymer gels. Science, 2006, 314(5800): 798-801  
    Yashin VV, Balazs AC. Theoretical and computational modeling of self-oscillating polymer gels. Journal of Chemical Physics, 2007, 126(12): 124707-124723  
    Yashin VV, Balazs AC. Modeling active materials based on self-oscillating gels. Bulletin of the American Physical Society, 2011
    Field R, Koros E, Noyes R. Oscillations in chemical systerms. Journal of the American Chemical Society, 1972, 94(25): 8649-8664  
    Nath M, Ganaie N, Rastogi R, et al. Effect of temperature on oscillatory behaviour of the system containing isomers of hydroxybenzoic acid in batch reactor. E-Journal of Chemistry, 2008, 5(4): 832-837  
    Field R, Noyes R. Oscillations in chemical systems. IV. limit cycle behavior in a model of a real chemical reaction. Journal of Chemical Physics, 1974, 60(5): 2001-2006
    Yashin VV, Balazs CA. Modeling polymer gels exhibiting self-oscillations due to the Belousov-Zhabotinsky reaction. Macromolecules, 2006, 39(6): 2024-2026  
    Wang P, Zhou J, Li M, et al. Nonlinear dynamics of self-oscillating polymer gels. Science China E: Technological Sciences, 2010, 53(7): 1862-1868  
    凌复华. 非线性振动系统周期运动及其稳定性的数值研究. 力学进展, 1986, 16(1): 14-27 (Ling Fuhua. Numerical treatments of a periodic motion and its stability of nonlinear oscillation systems. Advances in Mechanics, 1986, 16(1): 14-27 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1435
  • HTML全文浏览量:  58
  • PDF下载量:  983
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-13
  • 修回日期:  2013-04-17
  • 刊出日期:  2013-11-18

目录

    /

    返回文章
    返回