EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高雷诺数方腔流动的分子模拟

费飞 樊菁

费飞, 樊菁. 高雷诺数方腔流动的分子模拟[J]. 力学学报, 2013, 45(5): 653-659. doi: 10.6052/0459-1879-13-064
引用本文: 费飞, 樊菁. 高雷诺数方腔流动的分子模拟[J]. 力学学报, 2013, 45(5): 653-659. doi: 10.6052/0459-1879-13-064
Fei Fei, Fan Jing. MOLECULAR SIMULATION OF DRIVEN CAVITY FLOWS WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 653-659. doi: 10.6052/0459-1879-13-064
Citation: Fei Fei, Fan Jing. MOLECULAR SIMULATION OF DRIVEN CAVITY FLOWS WITH HIGH REYNOLDS NUMBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 653-659. doi: 10.6052/0459-1879-13-064

高雷诺数方腔流动的分子模拟

doi: 10.6052/0459-1879-13-064
基金项目: 国家自然科学基金资助项目(10921062).
详细信息
    通讯作者:

    樊菁,研究员,主要研究方向:稀薄气体动力学.E-mail:jfan@imech.ac.cn

  • 中图分类号: V211.25

MOLECULAR SIMULATION OF DRIVEN CAVITY FLOWS WITH HIGH REYNOLDS NUMBER

Funds: The project was supported by the National Natural Science Foundation of China (10921062).
  • 摘要: 采用扩散信息保存(diffusive information preservation,D-IP)方法计算了雷诺数为102~104的二维方腔流动. D-IP方法是一种基于扩散运动观点的分子模拟方法, 克服了经典直接模拟蒙特卡罗方法对于时间步长和网格大小的严格限制.在计算中, D-IP方法的时间步长和网格大小分别为分子平均碰撞时间和平均自由程的几十倍乃至几百倍, 所得到的方腔流线分布和旋涡的精细结构, 均与Navier-Stokes方程数值解相符.

     

  • Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994
    Bird GA. The initiation of centrifugal instabilities in an axially symmetric flow. In: Shen C, ed., Prof. of 20th International Symposium on Rarefied Gas Dynamics, Peking Univ. Press, Beijing, 1997. 149-154
    Bird GA. Recent advances and current challenges for DSMC. Computer Math. Applic, 1998, 35: 1-14
    Alder BJ. Reflections on the Boltzmann equation. In: Bartel TJ, Gallis MA, eds. Proc. of 22th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings, 2001. 1-3
    Weisgraber TH, Alder BJ. Computer experiments on the onset of turbulence. In: Mareschal M, et al. eds. Proc. of 28th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 1501, 2012. 30-33
    Zhang J, Fan J. Information preservation modelling of Rayleigh-Bénard transition from thermal conduction to convection., In: Abe T. ed., Proc. of 26th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 1084, 2009. 359-364
    Zhang J, Fan J. Monte Carlo simulation of thermal fluctuations below the onset of Rayleigh-Bénard convection. Physical Review E, 2009, 79: 056302  
    Zhang J, Fan J. Effects of convection and solid wall on the diffusion in microscale convection flows. Phys. Fluids, 2010, 22: 122005  
    Alexander FJ, Garcia AL, Alder BJ. Cell size dependence of transport coefficients in stochastic particle algorithms. Phys Fluids, 1998, 10: 1540  
    Hadjiconstantinou NG. Analysis of discretization in the direct simulation Monte Carlo method. Phys Fluids, 2000, 12: 2634-2638  
    Jenny P, Torrilhon M, Heinz S. A solution algorithm for the fluid dynamic equations based on a stochastic model for molecular motion. J Comput. Phys, 2010, 229: 1077-1098
    Gorji M H, Torrilhon M, Jenny P. Fokker-Planck model for computational studies of monatomic rarefied gas flows. J Fluid Mech, 2011, 680: 574-601  
    Fan J, Shen C. Statistical simulation of low-speed unidirectional flows in transition regime. In: Brun R, ed., Proc. of 21th International Symposium on Rarefied Gas Dynamics, Cepadus-Editions, Toulouse, 1999. 245-252
    Fan J, Shen C. Statistical simulation of low-speed rarefied gas flows. J Comput Phys, 2001, 167: 393-412  
    Sun Q, Boyd ID. Theoretical development of the information preservation method for strongly nonequilibrium gas flows. AIAA Paper 2005-4828, 2005
    Masters ND, Ye W. Octant flux splitting information preservation DSMC method for thermally driven flows. J Comput Phys, 2007, 226: 2044-2062  
    Zhang J, Fan J, Jiang JZ. Multiple temperature model for the information preservation method and its application to nonequilibrium gas flows. J Comput Phys, 2011, 230: 7250-7265  
    Fei F, Fan J. Molecular simulation of small Knudsen number flows. In: Mareschal M, et al. eds., Proc. of 28th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings 1501, 2012. 864-871
    Fei F, Fan J. A diffusive information preservation method for small Knudsen number flows. J Comput Phys, 2013, 15: 179-193
    Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys, 1982, 48: 387-411  
    Einstein A. Motion of suspended particles on the kinetic theory. Annalen der Physik, 1905, 17(3): 549-560
    Chandrasekhar S. Stochastic problems in physics and astronomy. Rev Mod Phys, 1943, 15: 1-89  
    Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Ann Rev Fluid Mech, 2000, 32: 93-136  
  • 加载中
计量
  • 文章访问数:  1213
  • HTML全文浏览量:  49
  • PDF下载量:  899
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-08
  • 修回日期:  2013-05-24
  • 刊出日期:  2013-09-18

目录

    /

    返回文章
    返回