EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用重正化群方法研究强旋转湍流的统计性质

王晓宏 周全

王晓宏, 周全. 利用重正化群方法研究强旋转湍流的统计性质[J]. 力学学报, 2013, 45(5): 660-665. doi: 10.6052/0459-1879-13-047
引用本文: 王晓宏, 周全. 利用重正化群方法研究强旋转湍流的统计性质[J]. 力学学报, 2013, 45(5): 660-665. doi: 10.6052/0459-1879-13-047
Wang Xiaohong, Zhou Quan. THE RENORMALIZATION-GROUP ANALYSIS FOR THE STATISTICAL PROPERTIES OF RAPIDLY ROTATING TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 660-665. doi: 10.6052/0459-1879-13-047
Citation: Wang Xiaohong, Zhou Quan. THE RENORMALIZATION-GROUP ANALYSIS FOR THE STATISTICAL PROPERTIES OF RAPIDLY ROTATING TURBULENCE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 660-665. doi: 10.6052/0459-1879-13-047

利用重正化群方法研究强旋转湍流的统计性质

doi: 10.6052/0459-1879-13-047
基金项目: 国家自然科学基金资助项目(10872192).
详细信息
    通讯作者:

    王晓宏,教授,主要研究方向:湍流、渗流、计算流体力学.E-mail:xhwang@ustc.edu.cn

  • 中图分类号: O357.5+1

THE RENORMALIZATION-GROUP ANALYSIS FOR THE STATISTICAL PROPERTIES OF RAPIDLY ROTATING TURBULENCE

Funds: The project was supported by the National Natural Science Foundation of China (10872192).
  • 摘要: 利用重正化群方法对强旋转湍流场统计性质予以研究, 通过重正化微扰展开, 对高波数速度分量进行逐 阶平均.计算结果显示当旋转角速度Ω → ∞时, 用以表征高波数速度分量对低波数速度分量影响的重正化黏性将趋于0, 这表明在强旋转条件下科氏力将抑制湍流速度分量之间的非线性相互作用, 从而阻碍湍流的能量级串效应, 当Ω → ∞时湍流的能量级串效应消失, 导致湍流脉动消失, 流动将层流化.理论计算结果还显示对于强旋转湍流, 时域-空域联立Fourier的湍流速度分量存在二维化趋势, 球面平均能谱函数有标度关系E(k) ∝ k-3.

     

  • Speziale CG, Younis BA, Rubinstein R, et al. On consistency conditions for rotating turbulent flows. Phys Fluids, 1998, 22: 2108-2110
    Greenspan HP. The Theory of Rotating Fluids, New York: Cambridge University Press, 1968
    刘难生,仲峰泉,陆夕云等. 旋转圆管湍流的大涡模拟数值研究. 力学学报,2002, 34(6): 833-846 (Liu Nansheng, Zhong Fengquan, Lu Xiyun, et al. Large eddy simulation on turbulent flow in a pipe rorating about its axis. Acta Mechanica Sinica, 2002, 34(6): 833-846 (in Chinese))
    Zeman O. A note on the spectra and decay of rotating homogeneous turbulence. Phys Fluids, 1994, 6(10): 3221-3223  
    Zhou Y. A phenomenological treatment of rotating turbulence. Phys Fluids, 1995, 7(8): 2092-2094  
    Mahalov A, Zhou Y. Analytical and phenomenological studies of rotating turbulence. Phys Fluids, 1996, 8(8): 2138-2152  
    Yeung PK, Zhou Y. Numerical study of rotating turbulence with external forcing. Phys Fluids, 1998, 10(11): 2895-2899  
    Baroudl CN, Plappl BB, She ZS, et al. Anomalous self-similarity in a turbulent rapidly rotating fluid. Phy Rev Lett, 2002, 88(11): 11450-11453
    Thangam S, Wang XH, Zhou Y. Development of a turbulence model based on the energy spectrum for flows involving rotation. Phys Fluids, 1999, 11(8): 2225-2234  
    Canuto VM, Dubovikov MS. A dynamical model for turbulence. V. The effect of rotation. Phys Fluids, 1997, 9(7): 2132-2138  
    Rubinstein R, Zhou Y. The dissipation rate transport equation and subgrid-scale models in rotating turbulence. ICASE Report, 1997, 97-63: 1-11
    Smith LM, Waleffe F. Transfer of energy to two-dimensional large scales in forced, rotating three-dimensional turbulence. Phys Fluids, 1999, 11(6): 1608-1622  
    Yang X, Domaradzki JA. Large eddy simulations of decaying rotating Turbulence. Phys Fluids, 2004, 16(11): 4088-4104  
    Smith LM, Lee Y. On near resonances and symmetry breaking in forced rotating flows at moderate Rossby number. J Fluid Mech, 2005, 535: 111-142  
    Bellet F, Godeferd FS, Scott JF. Wave turbulence in rapidly rotating flows. J Fluid Mech, 2006, 562(1): 83-121
    Cambon C, Rubinstein R, Godeferd FS. Advances in wave turbulence rapidly rotating flows. New J Phys, 2004, 6(1): 73-101
    Forster D, Nelson DR, Stephen MJ. Large-distance and long-time properties of a randomly stirred fluid. Phys Rev A, 1977, 16(2): 732-749  
    Yakhot V, Orszag SA. Renormalization-group analysis of turbulence. Phys Rev Lett, 1986, 57(14): 1722-1724  
    Yakhot V, Orszag SA, Thangum S, et al. Development of turbulence models for shear flows by a double expansion technique. Phys Fluids A, 1992, 4: 1510-1520  
    Yakhot V, Smith LM. The Renormalization group, the ε -expansion and derivation of turbulence models. J Sci Comput, 1992, 7: 35-61  
    Rubinstein R, Barton JM. Nonlinear Reynolds stress models and the renormalization group. Phys Fluids A, 1990, 2: 1472-1476  
    Rubinstein R, Barton JM. Renormalization group analysis of Reynolds stress transport equation. Phys Fluids A, 1992, 4: 1759-1766  
    Rubinstein R, Barton JM. Infrared properties of an anisotropically stirred fluid. Phys Fluids, 1987, 30(10): 2987-2992  
    Wang Xiao-Hong, Zhou Quan. The renormalization group analysis for weakly rotating turbulent flows. Chin Phys Lett, 2011, 28(12): 1247021-1247024
    Carati D, Brenig L. Renormalization-group method for anisotropic turbulent transport. Phys Rev A, 1989, 40(9): 5193-5198  
    Zhou Y. Renormalization group theory for fluid and plasma turbulence. Phys Rep, 2010, 488(1): 1-49  
    Wang XH, Wu F. One modification to the Yakhot-Orszag calculation in the renormalization-group theory of turbulence. Phys Rev E, 1993, 48(1): R37-R38  
    Yakhot V, Orszag, SA, Panda R. Computational test of the renormalization group theory of turbulence. J Sci Comput, 1988, 3(2): 139-147  
  • 加载中
计量
  • 文章访问数:  1038
  • HTML全文浏览量:  54
  • PDF下载量:  822
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-08
  • 修回日期:  2013-03-14
  • 刊出日期:  2013-09-18

目录

    /

    返回文章
    返回