EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红细胞力学特性对血小板近壁运动的影响

许菁 王骁龙 刘筠乔 龚晓波

许菁, 王骁龙, 刘筠乔, 龚晓波. 红细胞力学特性对血小板近壁运动的影响[J]. 力学学报, 2013, 45(6): 974-981. doi: 10.6052/0459-1879-13-045
引用本文: 许菁, 王骁龙, 刘筠乔, 龚晓波. 红细胞力学特性对血小板近壁运动的影响[J]. 力学学报, 2013, 45(6): 974-981. doi: 10.6052/0459-1879-13-045
Xu Jing, Wang Xiaolong, Liu Yunqiao, Gong Xiaobo. MICRO-SCALE NUMERICAL STUDY OF THE EFFECT OF ERYTHROCYTE MECHANICAL PROPERTIES ON THE NEAR-WALL MOTION OF PLATELET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 974-981. doi: 10.6052/0459-1879-13-045
Citation: Xu Jing, Wang Xiaolong, Liu Yunqiao, Gong Xiaobo. MICRO-SCALE NUMERICAL STUDY OF THE EFFECT OF ERYTHROCYTE MECHANICAL PROPERTIES ON THE NEAR-WALL MOTION OF PLATELET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 974-981. doi: 10.6052/0459-1879-13-045

红细胞力学特性对血小板近壁运动的影响

doi: 10.6052/0459-1879-13-045
基金项目: 国家自然科学基金(11072155,11232010)和教育部博士点基金(2010007312000)资助项目.
详细信息
    通讯作者:

    龚晓波,副教授,主要研究方向:细胞生物力学。E-mail:x.gong@sjtu.edu.cn

  • 中图分类号: Q66

MICRO-SCALE NUMERICAL STUDY OF THE EFFECT OF ERYTHROCYTE MECHANICAL PROPERTIES ON THE NEAR-WALL MOTION OF PLATELET

Funds: The project was supported by the National Natural Science Foundation of China (11072155,11232010) and Ph.D. Programs Foundation of Ministry of Education of China (20100073120009).
  • 摘要: 采用浸入式边界法,模拟了多个红细胞和血小板在毛细血管内流动过程中的相互影响。通过改变红细胞体积比和红细胞的力学特性,分析了红细胞力学特性对血小板在与内皮细胞发生粘附前的动力学行为的影响机理,包括:红细胞对血小板趋壁效应的影响,血小板在流动过程中的变形情况,并从血小板所受垂直壁向合力的角度深入研究了红细胞和血小板之间的相互作用。数值模拟的结果表明,增加血流中的红细胞体积比,减小了血小板和血管壁之间的距离,增大了血小板的变形,血小板所受垂直壁向合力呈现剧烈波动,两者之间的挤压显著加强;而增大红细胞硬度,使得血小板的离壁距离增大。

     

  • Goldsmith HL, Mason SG. Axial migration of particles in poiseuille flow. Nature, 1961, 190: 1095-1096  
    Tangelder GJ, Teirlinck HC, Slaaf DW, et al. Distribution of blood platelets flowing in arterioles. American Journal of Physiology—Heart and Circulatory Physiology, 1985, 248(3): H318-H323
    Eckstein EC, Yeh CJ. Transient lateral transport of platelet-sized particles in flowing blood suspensions. Biophysical Journal, 1994, 66: 1706-1716  
    Fogelson AL, Crowl LM. Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. International Journal for Numerical Methods in Biomedical Engineering, 2010, 26: 471-487  
    Sugiyama K, Li S. A computational blood flow analysis in a capillary vessel including multiple red blood cells and platelets. Journal of Biomechanical Science and Engineering, 2012, 7(1): 72-83  
    Aarts PA, van den Broek SA, Prins GW, et al. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arteriosclerosis, Thrombosis, and Vascular Biology, Journal of the American Heart Association, 1988, 8(6): 819-824  
    Uijttewaal WS, Nijhof EJ, Bronkhorst PJ, et al. Near-wall excess of platelets induced by lateral migration of erythrocytes in flowing blood. American Journal of Physiology—Heart and Circulatory Physiology, 1993, 264: 1239-1244
    Abkarian M, Lartigue C, Viallat A. Tank-treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Physical Review Letters, 2002, 88: 6
    Almomani T, Udaykumar HS, Marshall JS, et al. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow. Annals of Biomedical Engineering, 2008, 36(6): 905-920  
    Unverdi S, Tryggvason G. A front-tracking method for viscous incompressible multi-fluid flows. Journal of Computational Physics, 1992, 100: 25-37  
    Gong ZX, Lu CJ, Huang HX. The immersed boundary and its application. Chinese Quarterly of Mechanics, 2007, 28(3): 353-362
    Tryggvason G, Bunner B, Esmaeeli A. A front-tracking method for computations of multiphase flow. Journal of Computational Physics, 2001, 169: 708-759  
    Evans E, Fung YC. Improved measurement of the erythrocyte geometry. Microvascular Research, 1972, 4: 335-347  
    Pozrikidis C. Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. Journal of Fluid Mechanics, 2001, 440: 269-291
    Takag S, Yamada T, Gong XB. The deformation of a vesicle in a linear shear flow. Journal of Applied Mechanics, 2009, 76: 021207  
    Skalak R, Tozeren A, Zarda R. Strain energy function of red blood cell membranes. Biophysical Journal, 1973, 13: 245-264  
    Barthes-Biesel D, Diaz A, Dhenin E. Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. Journal of Fluid Mechanics, 2002, 460: 211-222
    Bagchi P. Mesoscale simulation of the flow-induced deformation of blood flow in small vessels. Biophysical Journal, 2007, 92(6): 1858-1877  
    Haga JH, Strony J. Quantification of the passive mechanical properties of the resting platelet. Annals of Biomedical Engineering, 1998, 26: 268-277  
    Gong XB, Takagi K. The deformation behavior of multiple red blood cells in a capillary vessel. Journal of Biomechanical Engineering, 2009, 131: 074504  
    Keller SR, Skalak R. Motion of a tank-treading ellipsoidal particle in a shear flow. Journal of Fluid Mechanics, 1982, 120: 27-47  
    Skotheim JM, Secomb TW. Red blood cells and other nonspherical capsules in shear flow: Oscillatory dynamics and the tank-treading-to-tumbling transition. Physical Review Letters, 2007, 98: 078301  
    Huang WX, Chang CB, Sung HJ. Three-dimensional simulation of elastic capsules in shear flow by the penalty immersed boundary method. Journal of Computational Physics, 2012, 231(8): 3340-3364  
    Pozrikidis C. Numerical simulation of the flow-induced deformation of red blood cells. Annals of Biomedical Engineering, 2003, 31: 1194-1205  
  • 加载中
计量
  • 文章访问数:  1004
  • HTML全文浏览量:  63
  • PDF下载量:  1026
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-04
  • 修回日期:  2013-05-08
  • 刊出日期:  2013-11-18

目录

    /

    返回文章
    返回