EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

比例边界坐标插值方法在谱元法中的应用——无穷域Euler方程的数值模拟

吴泽艳 王立峰 武哲

吴泽艳, 王立峰, 武哲. 比例边界坐标插值方法在谱元法中的应用——无穷域Euler方程的数值模拟[J]. 力学学报, 2013, 45(4): 619-623. doi: 10.6052/0459-1879-13-026
引用本文: 吴泽艳, 王立峰, 武哲. 比例边界坐标插值方法在谱元法中的应用——无穷域Euler方程的数值模拟[J]. 力学学报, 2013, 45(4): 619-623. doi: 10.6052/0459-1879-13-026
Wu Zeyan, Wang Lifeng, Wu Zhe. THE SCALED BOUNDARY COORDINATE INTERPOLATION METHOD AND ITS APPLICATION TO SPECTRAL ELEMENT METHOD: NUMERICAL SIMULATION OF THE EULER EQUATIONS OVER UNBOUNDED DOMAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 619-623. doi: 10.6052/0459-1879-13-026
Citation: Wu Zeyan, Wang Lifeng, Wu Zhe. THE SCALED BOUNDARY COORDINATE INTERPOLATION METHOD AND ITS APPLICATION TO SPECTRAL ELEMENT METHOD: NUMERICAL SIMULATION OF THE EULER EQUATIONS OVER UNBOUNDED DOMAINS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 619-623. doi: 10.6052/0459-1879-13-026

比例边界坐标插值方法在谱元法中的应用——无穷域Euler方程的数值模拟

doi: 10.6052/0459-1879-13-026
详细信息
    通讯作者:

    王立峰,博士,主要研究方向:飞行器设计、数值方法.E-mail:wanglifeng@ase.buaa.edu.cn

  • 中图分类号: O343

THE SCALED BOUNDARY COORDINATE INTERPOLATION METHOD AND ITS APPLICATION TO SPECTRAL ELEMENT METHOD: NUMERICAL SIMULATION OF THE EULER EQUATIONS OVER UNBOUNDED DOMAINS

  • 摘要: 将比例边界坐标插值方法引入谱元法, 构成比例边界谱单元, 对无穷域Euler方程进行数值模拟.阐述了比例边界谱单元的基本使用方法以及基于比例边界谱元的Runge-Kutta间断Galerkin方法求解Euler方程的过程;计算了无穷域圆柱和NACA0012翼型绕流问题, 并与已有结果进行了比较, 显示了计算结果的正确性.用基于比例边界谱元的间断Galerkin方法求解无穷域Euler方程时, 最多只需将求解域划分为2个子域, 避免了一般谱方法将求解域划分为9个或者27个子域的麻烦. 比例边界谱单元为无穷域Euler方程的直接求解提供了一个可供参考的方法.

     

  • Tam CKW, Auriault L, Cambuli F. Perfectly matched layer as an absorbing boundary condition for the linearized Euler equations in open and ducted domains. Journal of Computational Physics,1998,114:213-234
    Hu FQ, Li XD, Lin DK. Absorbing boundary conditions for nonlinear Euler and Navier-Stokes equations based on the perfectly matched layer technique. Journal of Computational Physics, 2008, 227: 4398-4424  
    Zhou Y, Wang ZJ. Absorbing boundary conditions for the Euler and Navier-Stokes equations with the spectral difference method. Journal of Computational Physics, 2010, 229: 8733-8749  
    Deeks AJ, Cheng L. Potential flow around obstacles using the scaled boundary finite element method. International Journal for Numerical Methods in Fluids, 2003, 41: 721-741  
    滕斌,赵明,何广华. 三维势流场的比例边界有限元求解方法. 计算力学学报,2006,23(3): 301-306 (Teng Bin, Zhao Ming, He Guanghua. Computation of potential flow around three-dimensional obstacles by a scaled boundary finite element method. Chinese Journal of Computational Mechanics, 2006, 23(3): 301-306 (in Chinese))
    吴泽艳,王立峰,武哲. 无穷域势流问题的有限元/差分线法混合求解. 计算力学学报, 2011, 28(5): 754-759 (Wu Zeyan, Wang Lifeng, Wu Zhe. Calculation of potential flow problems over an infinite domain based on finite element methods and finite difference method of lines. Chinese Journal of Computational Mechanics, 2011, 28(5): 754-759 (in Chinese))
    Patera AT. A spectral element method for fluid dynamics: Laminar flow in a channel expansion. Journal of Computational Physics, 1984,54: 468-488  
    Guo BY, Wang TJ. Composite Laguerre-Legendre spectral method for exterior problems. Adv Comput Math,2010, 32: 393-429  
    Zhuang QQ, Shen J, Xu CG. A coupled Legrndre-Laguerre spectral element method for the Navier-Stokes equations in unbounded domains. J Sci Comput,2010,42: 1-22  
    Wolf JP, Song CM. The scaled boundary finite element method——a primer derivations. Computers & Structures, 2000, 78: 191-210  
    Karniadakis GEm, Sherwin SJ. Spectral/hp element methods for computational fluid dynamics. Oxford: Oxford University Press, 2005
    蔚喜军,周铁. 流体力学方程的间断有限元方法.计算物理, 2005, 22(2): 108-116 (Yu Xijun, Zhou Tie. Discontinuous finite element methods for solving hydrodynamic equations. Chinese Journal of Computational Physics, 2005, 22(2): 108-116 (in Chinese))
    吴迪,蔚喜军. 自适应间断有限元方法求解三维欧拉方程.计算物理, 2010, 27(4): 492-500 (Wu Di, Yu Xijun. Adaptive discontinuous galerkin method for euler equations. Chinese Journal of Computational Physics, 2010, 27(4): 492-500 (in Chinese))
    Jie Shen. Stable and efficient spectrla methods in unbounded domains using laguerre functions. Siam J Numer Anal, 2000, 38: 1113-1133  
    Shen J, Tang T. Spectral and High-Order Method with Applications. Beijing: Science Press, 2006
    Krivodonova L, Berger M. High-order accurate implementation of solid wall boundary conditions in curved geometries. Journal of Computational Physics, 2006, 211: 492-512  
    Cockburn B, Shu CW. Runge-Kutta discontinuous galerkin methods for convection-dominated problems. Journal of Scientific Computing, 2001, 16(3): 173-261  
    于剑,阎超. Navier-Stokes 方程间断Galerkin有限元方法研究.力学学报, 2010,42(5):962-970 (Yu Jian, Yan Chao. Study on discontinuous Galerkin method for Navier-Stokes equations. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5):962-970
  • 加载中
计量
  • 文章访问数:  1326
  • HTML全文浏览量:  63
  • PDF下载量:  1249
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-23
  • 修回日期:  2013-02-25
  • 刊出日期:  2013-07-18

目录

    /

    返回文章
    返回