EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间框架结构几何非线性分析方法的改进研究

李文雄 马海涛 陈太聪

李文雄, 马海涛, 陈太聪. 空间框架结构几何非线性分析方法的改进研究[J]. 力学学报, 2013, 45(6): 928-935. doi: 10.6052/0459-1879-13-018
引用本文: 李文雄, 马海涛, 陈太聪. 空间框架结构几何非线性分析方法的改进研究[J]. 力学学报, 2013, 45(6): 928-935. doi: 10.6052/0459-1879-13-018
Li Wenxiong, Ma Haitao, Chen Taicong. IMPROVEMENTS OF GEOMETRICALLY NONLINEAR ANALYSIS ALGORITHMS FOR SPATIAL FRAME STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 928-935. doi: 10.6052/0459-1879-13-018
Citation: Li Wenxiong, Ma Haitao, Chen Taicong. IMPROVEMENTS OF GEOMETRICALLY NONLINEAR ANALYSIS ALGORITHMS FOR SPATIAL FRAME STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 928-935. doi: 10.6052/0459-1879-13-018

空间框架结构几何非线性分析方法的改进研究

doi: 10.6052/0459-1879-13-018
基金项目: 亚热带建筑科学国家重点实验室自主研究课题(2010ZA03, 2013ZC22)和广西科学研究与技术开发计划(1298011-1)资助项目.
详细信息
    通讯作者:

    马海涛,教授,主要研究方向:有限元理论与应用,结构分析与优化方法。E-mail:maht@scut.edu.cn

  • 中图分类号: O343.2

IMPROVEMENTS OF GEOMETRICALLY NONLINEAR ANALYSIS ALGORITHMS FOR SPATIAL FRAME STRUCTURES

Funds: The project was supported by the State Key Laboratory of Subtropical Building Science (2010ZA03, 2013ZC22) and Guangxi Scientific and Technical Development Plan (1298011-1).
  • 摘要: 以几何精确梁理论为基础,分别采用高阶拉格朗日插值和埃米特插值构造高精度空间梁单元。提出基于单元层次平衡迭代的自由度凝聚方法,以保证单元的通用性。实现了基于载荷控制或柱面弧长控制的结构几何非线性分析算法。算例研究结果表明,提出的改进方法不但提高了计算效率,而且还具有较高的数值稳定性;特别是基于三次埃米特插值构造的单元表现出较好的性态,适用于结构屈曲后分析。

     

  • Simo JC. A finite strain beam formulation. The three-dimensional dynamic problem, Part I. Computer Methods in Applied Mechanics and Engineering, 1985, 49(1): 55-70  
    Simo JC, Vu-Quoc L. A three-dimensional finite-strain rod model, Part II: Computational aspects. Computer Methods in Applied Mechanics and Engineering, 1986, 58(1): 79-116  
    Reissner E. On one-dimensional finite-strain beam theory: The plane problem. Journal of Applied Mathematics and Physics, 1972, 23: 794-804
    Petrov E, Géradin M. Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids Part 1: Beam concept and geometrically exact nonlinear formulation. Computer Methods in Applied Mechanics and Engineering, 1998, 165(1-4): 43-92  
    Petrov E, Géradin M. Finite element theory for curved and twisted beams based on exact solutions for three-dimensional solids, Part 2: Anisotropic and advanced beam models. Computer Methods in Applied Mechanics and Engineering, 1998, 165(1-4): 93-127  
    Ibrahimbegovi? A. On finite element implementation of geometrically nonlinear Reissner's beam theory: Three-dimensional curved beam elements. Computer Methods in Applied Mechanics and Engineering, 1995, 122(1-2): 11-26  
    Ibrahimbegovi? A, Frey F, Kozar I. Computational aspects of vector-like parametrization of three-dimensional finite rotations. International Journal for Numerical Methods in Engineering, 1995, 38(21): 3653-3673  
    Ritto-Corrêa M, Camotim D. On the differentiation of the Rodrigues formula and its significance for the vector-like parameterization of Reissner-Simo beam theory. International Journal for Numerical Methods in Engineering, 2002, 55(9): 1005-1032  
    Simo JC, Vu-Quoc L. On the dynamics in space of rods undergoing large motions—A geometrically exact approach. Computer Methods in Applied Mechanics and Engineering, 1988, 66(2): 125-161  
    Zupan D, Saje M. Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Computer Methods in Applied Mechanics and Engineering, 2003, 192(49-50): 5209-5248
    Nukala PKVV, White DW. A mixed finite element for three- dimensional nonlinear analysis of steel frames. Computer Methods in Applied Mechanics and Engineering, 2004, 193(23-26): 2507-2545
    Nukala PKVV, White DW. Variationally consistent state determination algorithms for nonlinear mixed beam finite elements. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33-35): 3647-3666
    Alsafadie R, Hjiaj M, Battini JM. Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation. Thin-Walled Structures, 2011, 49(4): 523-533  
    Gonçalves R. A geometrically exact approach to lateral-torsional buckling of thin-walled beams with deformable cross-section. Computers and Structures, 2012, 106-107: 9-19
    Martín SC, Machado SP, Cortínez VH. A geometrically exact nonlinear finite element for composite closed section thin-walled beams. Computers and Structures, 2011, 89(23-24): 2337-2351
    Goncalves R, Ritto-Corrêa M, Camotim D. Incorporation of wall finite relative rotations in a geometrically exact thin-walled beam element. Computational Mechanics, 2011, 48(2): 229-244  
    Goncalves R, Ritto Corrêa M, Camotim D. A large displacement and finite rotation thin-walled beam formulation including cross-section deformation. Computer Methods in Applied Mechanics and Engineering, 2010, 199(23-24): 1627-1643
    李进京, 李明瑞, 李辛. 2维梁有限变形的精确理论和近似理论. 中国农业大学学报, 1999, 4(2): 36-42 (Li Jinjing, Li Mingrui, Li Xin. Exact and approximate finite deformation theories of 2-D beam. Journal of China Agricultural University, 1999, 4(2): 36-42 (in Chinese))
    罗永峰, 韩庆华, 李海旺. 建筑钢结构稳定理论与应用. 北京: 人民交通出版社, 2010 (Luo Yongfeng, Han Qinghua, Li Haiwang. Stability of Steel Structures—— The Theory and Implement. Beijing: China Communications Press, 2010 (in Chinese))
    Cook RD, Malkus DS, Plesha ME, et al. Concepts and Applications of Finite Element Analysis (4th edn). New York: Wiley, 2000
    张年文. 框架几何非线性分析的若干问题. [博士论文]. 杭州: 浙江大学, 2010 (Zhang Nianwen. Several problems in geometrically nonlinear analysis for Frames. [PhD Thesis]. Hangzhou: Zhejiang University, 2010 (in Chinese))
    丁泉顺, 陈艾荣, 项海帆. 空间杆系结构实用几何非线性分析. 力学季刊, 2001, 22(3): 300-306 (Ding Quanshun, Chen Ai-rong, Xiang Haifan. Geometrically nonlinear practical analysis of spatial frames. Chinese Quarterly of Mechanics, 2001, 22(3): 300-306 (in Chinese))
    Bathe KJ, Bolourchi S. Large displacement analysis of three-dimensional beam structures. International Journal for Numerical Methods in Engineering, 1979, 14(7): 961-986  
    Dvorkin EN, Onate E. Oliver J. On a non-linear formulation for curved Timoshenko beam elements considering large displacement/rotation increments. International Journal for Numerical Methods in Engineering, 1998, 26: 1597-1613
    Cardona A, Geradin M. A Beam finite element non-linear theory with finite rotations. International Journal for Numerical Methods in Engineering, 1988, 26(11): 2403-2438  
    Crisfield MA. A consistent co-rotational formulation for nonlinear, three-dimensional, beam elements. Computer Methods in Applied Mechanics and Engineering, 1990, 81: 131-150  
    Schulz M, Filippou FC. Non-linear spatial Timoshenko beam element with curvature interpolation. International Journal for Numerical Methods in Engineering, 2001, 50: 761-785  3.0.CO;2-2"><
  • 加载中
计量
  • 文章访问数:  1118
  • HTML全文浏览量:  65
  • PDF下载量:  1089
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-21
  • 修回日期:  2013-03-29
  • 刊出日期:  2013-11-18

目录

    /

    返回文章
    返回