EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体环量控制翼型增升的实验研究

冯立好 王晋军 Choi Kwing-So

冯立好, 王晋军, Choi Kwing-So. 等离子体环量控制翼型增升的实验研究[J]. 力学学报, 2013, 45(6): 815-821. doi: 10.6052/0459-1879-13-012
引用本文: 冯立好, 王晋军, Choi Kwing-So. 等离子体环量控制翼型增升的实验研究[J]. 力学学报, 2013, 45(6): 815-821. doi: 10.6052/0459-1879-13-012
Feng Lihao, Wang Jinjun, Choi Kwing-So. EXPERIMENTAL INVESTIGATION ON LIFT INCREMENT OF A PLASMA CIRCULATION CONTROL AIRFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821. doi: 10.6052/0459-1879-13-012
Citation: Feng Lihao, Wang Jinjun, Choi Kwing-So. EXPERIMENTAL INVESTIGATION ON LIFT INCREMENT OF A PLASMA CIRCULATION CONTROL AIRFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 815-821. doi: 10.6052/0459-1879-13-012

等离子体环量控制翼型增升的实验研究

doi: 10.6052/0459-1879-13-012
基金项目: 高等学校博士学科点专项科研基金资助项目(20121102120015).
详细信息
    通讯作者:

    冯立好,讲师,主要研究方向:流动控制和空气动力学。E-mail:lhfeng@buaa.edu.cn

  • 中图分类号: V211.4

EXPERIMENTAL INVESTIGATION ON LIFT INCREMENT OF A PLASMA CIRCULATION CONTROL AIRFOIL

Funds: The project was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (20121102120015).
  • 摘要: 利用等离子体激励器发展了新型的环量增升技术,并对二维NACA0012翼型绕流实施控制。由于NACA0012翼型为尖后缘构型,环量增升装置由2个非对称型介质阻挡放电等离子体激励器构成。一个等离子体激励器贴附于翼型吸力面靠近后缘处,其诱导的壁面射流沿来流方向指向下游;另一个等离子体激励器贴附于翼型压力面靠近后缘处,其诱导的壁面射流与来流方向相反指向上游。在风洞中通过时间解析二维PIV系统对翼型绕流流场进行了测量,基于翼型弦长的雷诺数Re=20 000。结果表明在等离子体激励器的控制下,翼型压力面靠近后缘处可以形成一个定常回流区,从而起到虚拟气动外形的作用,因此翼型吸力面的流场得到加速,压力面的流场得到减速,使得翼型压力面的吸力以及压力面的压力都得到增加,进而增加了翼型的环量。风洞天平测力实验进一步验证了该环量增升技术的有效性。在整个攻角范围内,施加控制的翼型的升力系数相比没有控制的工况有明显的提高。

     

  • Englar RJ. Circulation control pneumatic aerodynamics: blown force and moment augmentation and modification; past, present, and future. AIAA Paper 2000-2541, 2000
    刘晶昌, 徐建中, 郑敏. 环量控制翼型动态失速特性研究. 工程热物理学报, 1999, 20(1): 30-35 (Liu Jingchang, Xu Jianzhong, Zheng Min. Some dynamic still properties of an oscillating circulation control airfoil. Journal of Engineering Thermophysics, 1999, 20(1): 30-35 (in Chinese))
    宋彦萍, 杨晓光, 李亚超等. 环量控制翼型中柯恩达效应的数值模拟. 工程热物理学报, 2010, 31(9): 1475-1479 (Song Yanping, Yang Xiaoguang, Li Yachao, et al. Numerical simulation of Coanda effect in circulation control airfoil. Journal of Engineering Thermophysics, 2010, 31(9): 1475-1479 (in Chinese))
    Min BY, Lee W, Englar R, et al. Numerical investigation of circulation control airfoils. Journal of Aircraft, 2009, 46(4): 1403-1410  
    Swanson RC, Rumsey CL. Computation of circulation control airfoil flows. Computers & Fluids, 2009, 38(10): 1925-1942  
    Dygert RK, Dang TQ. Experimental investigation of an embedded crossflow fan for airfoil propulsion/circulation control. Journal of Propulsion and Power, 2009, 25(1): 196-203  
    Nishino T, Hahn S, Shariff K. Large-eddy simulations of a turbulent Coanda jet on a circulation control airfoil. Physics of Fluids, 2010, 22(12): 125105  
    Nishino T, Shariff K. Numerical study of wind-tunnel sidewall effects on circulation control airfoil flows. AIAA Journal, 2010, 48(9): 2123-2132  
    Rumsey CL, Nishino T. Numerical study comparing RANS and LES approaches on a circulation control airfoil. International Journal of Heat and Fluid Flow, 2011, 32(5): 847-864  
    Vorreiter A, Fischer S, Saathoff H, et al. Numerical investigations of the efficiency of circulation control in a compressor stator. Journal of Turbomachinery, 2012, 134(2): 021012  
    John LL. Why have only two circulation-controlled STOL aircraft been built and flown in years 1974--2004. In: Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1, NASA/Office of Naval Research, 2004. 603-622
    Moreau E. Airflow control by non-thermal plasma actuators. Journal of Physics D: Applied Physics, 2007, 40(3): 605-636  
    Wang JJ, Choi KS, Feng LH, et al. Recent developments in DBD plasma flow control. Progress in Aerospace Sciences, 2013, 62: 52-78. http://dx.doi.org/10.1016/j.paerosci.2013.05.003  
    Zhang PF, Yan B, Liu AB, et al. Numerical simulation on plasma circulation control airfoil. AIAA Journal, 2010, 48(10): 2213-2226  
    Zhang PF, Yan B, Dai CF. Lift enhancement method by synthetic jet circulation control. Science China-Technological Sciences, 2012, 55(9): 2585-2592  
    Alam MM, Zhou Y, Yang HX, et al. The ultra-low Reynolds number airfoil wake. Experiments in Fluids, 2010, 48(1): 81-103  
    Jukes TN, Choi KS. Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Physics of Fluids, 2009, 21(8): 084103  
    Chen FJ, Beeler GB. Virtual shaping of a two-dimensional NACA 0015 airfoil using synthetic jet actuator. AIAA Paper 2002-3273, 2002
    Feng LH, Wang JJ. Modification of a circular cylinder wake with synthetic jet: Vortex shedding modes and mechanism. European Journal of Mechanics B/Fluids, 2014, 43: 14-32. http://dx.doi.org/10.1016/j.euromechflu.2013.06.011  
    Wang JJ, Li YC, Choi KS. Gurney flap-lift enhancement, mechanisms and applications. Progress in Aerospace Sciences, 2008, 44(1): 22-47  
    Feng LH, Jukes TN, Choi KS, et al. Flow control over a NACA 0012 airfoil using dielectric-barrier-discharge plasma actuator with a Gurney flap. Experiments in Fluids, 2012, 52(6): 1533-1546  
    Traub LW, Miller A, Rediniotis O. Comparisons of a Gurney and jet-flap for hinge-less control. Journal of Aircraft, 2004, 41(2): 420-423  
  • 加载中
计量
  • 文章访问数:  1638
  • HTML全文浏览量:  60
  • PDF下载量:  1848
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-14
  • 修回日期:  2013-08-03
  • 刊出日期:  2013-11-18

目录

    /

    返回文章
    返回