EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焊锡接点金属间化合物晶间裂纹的内聚力模拟

安彤 秦飞

安彤, 秦飞. 焊锡接点金属间化合物晶间裂纹的内聚力模拟[J]. 力学学报, 2013, 45(6): 936-947. doi: 10.6052/0459-1879-13-004
引用本文: 安彤, 秦飞. 焊锡接点金属间化合物晶间裂纹的内聚力模拟[J]. 力学学报, 2013, 45(6): 936-947. doi: 10.6052/0459-1879-13-004
An Tong, Qin Fei. COHESIVE ZONE MODELING OF INTERGRANULAR CRACKING OF INTERMETALLIC COMPOUNDS IN SOLDER JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 936-947. doi: 10.6052/0459-1879-13-004
Citation: An Tong, Qin Fei. COHESIVE ZONE MODELING OF INTERGRANULAR CRACKING OF INTERMETALLIC COMPOUNDS IN SOLDER JOINTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 936-947. doi: 10.6052/0459-1879-13-004

焊锡接点金属间化合物晶间裂纹的内聚力模拟

doi: 10.6052/0459-1879-13-004
基金项目: 国家自然科学基金(10972012)和北京工业大学博士生创新基金资助项目.
详细信息
    通讯作者:

    秦飞,教授,主要研究方向:先进电子封装技术与可靠性。E-mail:qfei@bjut.edu.cn

  • 中图分类号: O347.3;TN406

COHESIVE ZONE MODELING OF INTERGRANULAR CRACKING OF INTERMETALLIC COMPOUNDS IN SOLDER JOINTS

Funds: The project was supported by the National Natural Science Foundation of China (10972012) and the Doctoral Fund of Innovation of Beijing University of Technology.
  • 摘要: 为研究焊锡接点金属间化合物微结构对其微观-宏观力学行为的影响,采用Voronoi图算法构造了金属间化合物的晶粒尺度几何模型,通过在晶粒界面配置内聚力界面单元,提出了模拟金属间化合物晶粒界面裂纹起裂、扩展与连通的有限元数值模拟方法。基于该方法,研究了晶粒形状和晶粒界面缺陷对晶界微开裂模式和整体响应的影响,研究了金属间化合物微结构对焊锡接点强度和破坏模式的影响。结果表明,晶粒形状对整体强度影响不大,但对微裂纹开裂模式有影响。当考虑晶界随机缺陷时,强度较低的晶粒界面对整体强度影响较大。金属间化合物层的厚度对焊锡接点强度和破坏模式均有影响,而金属间化合物与焊料界面的粗糙度主要影响焊锡接点的破坏模式。

     

  • Lee HT, Chen MH. Influence of intermetallic compounds on the adhesive strength of solder joints. Materials Science and Engineering A, 2002, 333: 24-34  
    Lee TY, Choi WJ, Tu KN, et al. Morphology, kinetics, and thermodynamics of solid-state aging of eutectic SnPb and Pb-free solders (Sn-3.5Ag, Sn-3.8Ag-0.7Cu and Sn-0.7Cu) on Cu. Journal of Materials Research, 2002, 17(2): 291-301
    Hayes SM, Chawla N, Frear DR. Interfacial fracture toughness of Pb-free solders. Microelectronics Reliability, 2009, 49: 269-287  
    Lee HT, Chen MH, Jao HM, et al. Influence of interfacial intermetallic compound on fracture behavior of solder joints. Materials Science and Engineering A, 2003, 358: 134-141  
    Pang JHL, Che FX. Drop impact analysis of Sn-Ag-Cu solder joints using dynamic high strain rate plastic strain as impact damage driving force. In: Proceedings of 56th Electronic Components and Technology Conference, San Diego, CA, United States, 2006, Piscataway, NJ, United States, IEEE, 2006. 49-54
    Alam MO, Lu H, Bailey C, et al. Fracture mechanics analysis of solder joint intermetallic compounds in shear test. Computational Materials Science, 2009, 45: 576-583
    An T, Qin F. Cracking of the intermetallic compound layer in solder joints under drop impact loading. Transactions of the ASME, Journal of Electronic Packaging, 2011, 133: 031004  
    Teo JWR, Sun YF. Spalling behavior of interfacial intermetallic compounds in Pb-free solder joints subjected to temperature cycling loading. Acta Materialia, 2008, 56: 242-249  
    Kim DG, Jang HS, Kim JW, et al. Correlation between the interfacial reaction and mechanical joint strength of the flip chip solder bump during isothermal aging. Journal of Materials Science: Materials in Electronics, 2005, 16: 603-609  
    Barbe F, Decker L, Jeulin D, et al. Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. model. International Journal of Plasticity, 2001, 17: 513-536
    Luther T, Könke C. Polycrystal models for the analysis of intergranular crack growth in metallic materials. Engineering Fracture Mechanics, 2009, 76: 2332-2343  
    Zavattieri PD, Raghuram PV, Espinosa HD. A computational model of ceramic, microstructures subjected to multi-axial dynamic loading. Journal of the Mechanics and Physics of Solids, 2001, 49: 27-68  
    Barenblatt GI. Mathematical theory of equilibrium cracks. Advances in Applied Mechanics, 1962, 7: 56-129
    Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8: 100-104  
    Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering, 1993, 1: 111-132  
    Camacho GT, Ortiz M. Computational modelling of impact damage in brittle materials. International Journal of Solids and Structures, 1996, 33: 2899-2938  
    Tvergaard V, Hutchinson JW. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1992, 40: 1377-1397  
    周储伟, 杨卫, 方岱宁. 内聚力界面单元与复合材料的界面损伤分析. 力学学报, 1999, 31(3): 372-373 (Zhou Chuwei, Yang Wei, Fang Daining. Cohesive interface element and interfacial damage analysis of composites. Acta Mechanica Sinica, 1999, 31(3): 372-373 (in Chinese))
    赵鹏飞, 尚福林, 闫亚宾等. 纳米悬臂梁Si/Cu界面破坏的弹塑性内聚力模拟. 固体力学学报, 2011, 32(1): 10-20 (Zhao Pengfei, Shang Fulin, Yan Yabin, et al. Elastic-plastic cohesive zone modeling of delamination of Si/Cu interface in a nano-cantilever. Chinese Journal of Solid Mechanics, 2011, 32(1): 10-20 (in Chinese))
    Geubelle PH, Baylor JS. Impact-induced delamination of composites: a 2D simulation. Composites Part B: Engineering, 1998, 29(5): 589-602  
    ABAQUS Version 6.10 Documentation. Providence, RI, United States: Dassault Systémes Simulia Corp., 2010
    Görlich J, Schmitz G, Tu KN. On the mechanism of the binary Cu/Sn solder reaction. Applied Physics Letters, 2005, 86(5): 1-3
    Tu KN, Lee TY, Jang JW, et al. Wetting reaction versus solid state aging of eutectic SnPb on Cu. Journal of Applied Physics, 2001, 89(9): 4843-4849  
    Gong JC, Liu CQ, Conway PP, et al. Evolution of CuSn intermetallics between molten SnAgCu solder and Cu substrate. Acta Materialia, 2008, 56: 4291-4297  
    Song FB. Experimental investigation on testing conditions of solder ball shear and pull tests and the correlation with board. [PhD Thesis]. Hong Kong: The Hong Kong University of Science and Technology, Department of Mechanical Engineering, 2007. 53-59
    Zhu HX, Thorpe SM, Windle AH. The geometrical properties of irregular two-dimensional Voronoi tessellations. Philosophical Magazine A, 2001, 81(12): 2765-2783  
    van den Bosch MJ, Schreurs PJG, Geers MGD. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion. Engineering Fracture Mechanics, 2006, 73: 1220-1234  
    van den Bosch MJ, Schreurs PJG, Geers MGD. A cohesive zone model with a large displacement formulation accounting for interfacial fibrillation. European Journal of Mechanics A/Solids, 2007, 26: 1-19  
    Feih S. Development of a user element in ABAQUS for modelling of cohesive laws in composite structures. Technical Report Riso-R-1463 (EN), Roskilde, Denmark: Riso National Laboratory, 2004
    Ghosh G. Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. Journal of Materials Research, 2004, 19 (5): 1439-1454  
    Prakash KH, Sritharan T. Tensile fracture of tin-lead solder joints in copper. Materials Science and Engineering A, 2004, 379: 277-285  
    Zhao J, Cheng CQ, Qi L, et al. Kinetics of intermetallic compound layers and shear strength in Bi-bearing SnAgCu/Cu soldering couples. Journal of Alloys and Compounds, 2009, 473: 382-388  
    Zavattieri PD. Computational modeling for bridging size scales in the failure of solids. [PhD Thesis]. West Lafayette, IN, United States: Purdue University, 2000. 103-107
    Weibull W, Sweden S. A statistical distribution function of wide applicability. Transactions of the ASME, Journal of Applied Mechanics, 1951, 18(3): 293-2
  • 加载中
计量
  • 文章访问数:  1134
  • HTML全文浏览量:  116
  • PDF下载量:  556
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-04
  • 修回日期:  2013-03-05
  • 刊出日期:  2013-11-18

目录

    /

    返回文章
    返回