EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用CBR确定面心立方金属的表面弹性参量

刘建云 宋晶如 魏悦广

刘建云, 宋晶如, 魏悦广. 应用CBR确定面心立方金属的表面弹性参量[J]. 力学学报, 2013, 45(4): 541-547. doi: 10.6052/0459-1879-12-372
引用本文: 刘建云, 宋晶如, 魏悦广. 应用CBR确定面心立方金属的表面弹性参量[J]. 力学学报, 2013, 45(4): 541-547. doi: 10.6052/0459-1879-12-372
Liu Jianyun, Song Jingru, Wei Yueguang. DETERMINATIONS OF SURFACE ELASTIC PARAMETERS OF FCC-METALS BY USING THE CAUCHY-BORN RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 541-547. doi: 10.6052/0459-1879-12-372
Citation: Liu Jianyun, Song Jingru, Wei Yueguang. DETERMINATIONS OF SURFACE ELASTIC PARAMETERS OF FCC-METALS BY USING THE CAUCHY-BORN RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 541-547. doi: 10.6052/0459-1879-12-372

应用CBR确定面心立方金属的表面弹性参量

doi: 10.6052/0459-1879-12-372
基金项目: 国家自然科学基金资助项目(11021262, 10932011).
详细信息
    通讯作者:

    魏悦广,研究员,主要研究方向:跨尺度力学理论、实验及模拟研究.E-mail:ywei@lnm.imech.ac.cn

  • 中图分类号: O033

DETERMINATIONS OF SURFACE ELASTIC PARAMETERS OF FCC-METALS BY USING THE CAUCHY-BORN RULE

Funds: The project was supported by the National Natural Science Foundation of China (11021262, 10932011).
  • 摘要: 首先从能量变分出发基于同时考虑应变梯度效应和表面效应的跨尺度力学理论, 推导出表面能和表面弹性本构等基本关系, 然后基于简单的准连续Cauchy-Born法则(CBR)建立一种确定表面能密度以及表面弹性参量的方法.进一步以面心立方(face-centre-cubic,FCC)金属为例, 系统地获得了常用FCC金属表面弹性参量的数值, 结果与他人应用分子动力学计算得到的结果相吻合.

     

  • Fleck NA, Hutchinson JW. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 2001, 49: 2245-2271  
    Wei YG. Particulate size effects in the particle-reinforced metal-matrix composites. Acta Mechanica Sinica (English Series), 2001, 17: 45-58
    Wei YG, Hutchinson JW. Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 1997, 45: 1253-1273  
    Lazopoulos KA, Lazopoulos AK. On the torsion problem of strain gradient elastic bars. Mechanics Research Communications, 2012, 45: 42-47  
    Stolken JS, Evans AG. A microbend test method for measuring the plasticity length scale. Acta Materialia, 1998, 46: 5109-5115  
    Begley MR, Hutchinson JW. The mechanics of size-dependent indentation. Journal of the Mechanics and Physics of Solids, 1998, 46: 2049-2068  
    Chen XL, Ma HS, Liang LH, et al. A surface energy model and application to mechanical behavior analysis of single crystals at sub-micron scale. Computational Materials Science, 2009, 46: 723-727  
    Duan HL, Wang J, Karihaloo BL, et al. Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Materialia, 2006, 54: 2983-2990  
    Gao W, Yu SW, Huang GY. Finite element characterization of the size-dependent mechanical behavior in nanosystems. Nanotechnology, 2006, 17: 1118-1122  
    Wang GF, Feng XQ, Wang TJ, et al. Surface effects on the near-tip stresses for mode-I and mode-III cracks. Journal of Applied Mechanics, 2008, 75: 011001  
    Ma HS, Hu GK. Eshelby tensors for an ellipsoidal inclusion in a micropolar material. International Journal of Engineering Science, 2006, 44: 595-605  
    Wu B, Liang LH, Ma HS, et al. A trans-scale model for size effects and intergranular fracture in nanocrystalline and ultra-fine polycrystalline metals. Computational Materials Science, 2012, 57: 2-7  
    Gibbs JW. The Scientific Papers of J. Willard Gibbs, Volume. I: Thermodynamics. New York: Longmans-Green, 1906
    付宝勤. 基于固体与分子经验电子理论的表面能分析及计算.[博士论文]. 北京:北京化工大学, 2010 (Fu Baoqin, Analysis and calculation of surface energy with the empirical electron theory in solid and molecule. [PhD Thesis]. Beijing: Beijing University of Chemical Technology, 2010 (in Chinese))
    Gibbs JW. The Collected Works of J Willard Gibbs. Volume I, Thermodynamics. New York: Longmans, Green, and Company, 1928
    Shuttleworth R. The surface tension of solids. Proc Phys Soc A, 1950, 63: 444-457  
    Park HS. Quantifying the size-dependent effect of the residual surface stress on the resonant frequencies of silicon nanowires if finite deformation kinematics are considered. Nanotechnology, 2009, 20: 206102
    Meade RD, Vanderbilt D. Origins of stress on elemental and chemisorbed semiconductor surfaces. Physical Review Letter, 1989, 63: 1404  
    Needs RJ. Calculations of the surface stress tensor at aluminum (111) and (110) surface. Physical Review Letter, 1987, 58: 53  
    Shenoy VB. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B, 2005, 71: 094104  
    Mi CW, Jun S, Kouris DA. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Physical Review B, 2008, 77: 075425  
    Pahlevani L, Shodja HM. Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: determination of the surface/interface elastic properties via an atomistic approach. Journal of Applied Mechanics, 2011, 78: 011011  
    Steinmann P, Elizondo A, Sunyk R. Studies of validity of the Cauchy-Born rule by direct comparison of continuum and atomistic modelling. Modelling and Simulation in Materials Science and Engineering, 2007, 15: S271-S281  
    Johnson RA. Alloy models with the embedded-atom method. Physical Review B, 1989, 37: 12554
    Rafii-Tabar H, Suttton AP. Long-range Finnis-Sinclair potentials for fcc metallic alloys. Philosophical Magazine Letters, 1991, 63: 217-224  
  • 加载中
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  56
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-24
  • 修回日期:  2013-02-20
  • 刊出日期:  2013-07-18

目录

    /

    返回文章
    返回