EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平动点轨道演化性质分析和应用研究

程潏 袁建平 罗建军

程潏, 袁建平, 罗建军. 平动点轨道演化性质分析和应用研究[J]. 力学学报, 2013, 45(5): 763-771. doi: 10.6052/0459-1879-12-353
引用本文: 程潏, 袁建平, 罗建军. 平动点轨道演化性质分析和应用研究[J]. 力学学报, 2013, 45(5): 763-771. doi: 10.6052/0459-1879-12-353
Cheng Yu, Yuan Jianping, Luo Jianjun. THE EVOLUTION CHARACTERIZATION OF LIBRATIN POINT ORBITS AND APPLICATION RESEARCH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 763-771. doi: 10.6052/0459-1879-12-353
Citation: Cheng Yu, Yuan Jianping, Luo Jianjun. THE EVOLUTION CHARACTERIZATION OF LIBRATIN POINT ORBITS AND APPLICATION RESEARCH[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 763-771. doi: 10.6052/0459-1879-12-353

平动点轨道演化性质分析和应用研究

doi: 10.6052/0459-1879-12-353
基金项目: 国家自然科学基金资助项目(11272255).
详细信息
    通讯作者:

    程潏,博士研究生,主要研究方向:航天器动力学与控制、深空探测.E-mail:cheng23yu@126.com

  • 中图分类号: V412.4+1

THE EVOLUTION CHARACTERIZATION OF LIBRATIN POINT ORBITS AND APPLICATION RESEARCH

Funds: The project was supported by the National Natural Science Foundation of China (11272255).
  • 摘要: 三体问题中, 轨道的受力和运动规律非常复杂. 对于特定的任务, 如何选择轨道的初始解是一大难题.针对平面三体问题, 利 用近拱点庞加莱映射, 对平动点顺行轨道和逆行轨道的长期和短期演化性质进行分析.根据轨道的初始状态将其分为逃逸轨道和捕获轨道.对于逃逸轨道, 给出了同宿轨道和异宿轨道的设计方法, 并利用两级微分修正法消除了拼接点处的位置不连续问题.对于捕获轨道, 得到了几类典型的周期和准周期轨道.对逆行轨道的演化性质进行分析时发现, 逆行轨道通常为准周期轨道, 比顺行轨道更加稳定.利用近拱点庞加莱映射可以快速确定不同类型轨道对应的初始状态, 为特定任务需求下的轨道设计提供了一种快速而有效的选择方案.

     

  • Lo MW, Williams BG, Bollman WE, et al. GENESIS mission design. Journal of the Astronautical Sciences, 2001, 49(1): 169-184
    Flota D, Woodard M, Howell KC, et al. Application of multi-body dynamical environments: The ARTEMIS transfer trajectory design. IAF 61st International Astronautical Congress, Prague, Czech Republic, 2010
    吴伟仁,崔平远,乔栋等. 嫦娥二号日地拉格朗日L2点探测轨道设计与实施. 科学通报,2012, 57(21):1987-1991 (Wu Weiren, Cui Pingyuan, Qiao Dong, et al. Design and performance of exploring trajectory to Sun-Earth L2 point Chang’E-2 mission. Chinese Science Bulletin, 2012, 57(21): 987-1991 (in Chinese))
    侯锡云,刘林. 共线平动点的动力学特征及其在深空探测中的应用. 宇航学报, 2008, 29(3): 736-747 (Hou Xiyun, Liu Lin. The dynamics and applications of the collinear libration points in deep space exploration. Journal of Astronautics, 2008, 29(3): 736-747 (in Chinese))
    Hénon M. Exploration of the restricted problem. V. Hill's case: Periodic orbits and their stability. Astronomy and Astrophysics, 1969(1): 223-238
    Belbruno EA, Miller JK. Sun-perturbed earth-to-moon transfers with ballistic capture. Journal of Guidance, Control, and Dynamics, 1993, 16(4): 770-775  
    Koon WS, Lo MW, Marsden JE, et al. Low energy transfer to the moon. Celestial Mechanics and Dynamical Astronomy, 2001, 81(1-2): 63-73  
    Howell KC, Marchand BG, Lo MW. Temporary satellite capture of short- period Jupiter family comets from the perspective of dynamical systems. Journal of the Astronautical Sciences, 2001, 49(4): 539-557
    Gómez G, Koon WS, Lo MW, et al. Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity, 2004, 17(5): 1571-1606  
    Villac BF, Scheeres DJ. On the concept of periapsis in Hill's problem. Celestial Mechanics and Dynamics Astronomy, 2004, 90: 165-178  
    Villac BF, Scheers DJ. On the concept of periapsis in Hill's problem. Celestial Mechanics and Dynamics Astronomy, 2004, 90: 165-178  
    Davis DC,Howell KC. Trajectory evolution in the multi-body problem with applications in the saturnian system. In: Proceedings of the 61st International Astronautical Congress, Prague, Czech Republic, 2010
    Koon WS, Lo MW, Marsden JE, et al. Dynamical systems, the three-body problem, and space mission design. Springer-Verlag New York Incorporated, 2011
    Gómez G, Jorba A, Masdemont J, et al. Study refinement of semi-analytical halo orbit theory. Final Report, ESOC Contract No.: 8625/89/D/MD(SC), 1991
    Davis DC, Howll KC. Characterization of trajectories near the smaller primary in restricted problem for applications. Journal of Guidance, Control, and Dynamics, 2012, 35(1): 116-128  
    Haapala AF, Trajectory design using periapsis Poincaré maps and invariant manifolds. [Master Thesis]. USA: Purdue University, West Lafayette, 2011
    Hamilton DP, Krivov AV. Dynamics of distant moons of asteroids. Icarus, 1997, 128(1):241-249  
    Davis DC. Multi-body trajectory design strategies based on periapsis Poincaré maps. [PhD Thesis]. USA: Purdue University, West Lafayette, 2011
    Howll KC, Pernicka HJ. Numerical determination of lissajous trajectories in the restricted three-body problem. Celestial Mechanics, 1987, 41(1): 107-124
  • 加载中
计量
  • 文章访问数:  1429
  • HTML全文浏览量:  66
  • PDF下载量:  1115
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-11
  • 修回日期:  2013-01-16
  • 刊出日期:  2013-09-18

目录

    /

    返回文章
    返回