EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

韧性材料冲击拉伸碎裂中的碎片尺寸分布规律

郑宇轩 陈磊 胡时胜 周风华

郑宇轩, 陈磊, 胡时胜, 周风华. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律[J]. 力学学报, 2013, 45(4): 580-587. doi: 10.6052/0459-1879-12-338
引用本文: 郑宇轩, 陈磊, 胡时胜, 周风华. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律[J]. 力学学报, 2013, 45(4): 580-587. doi: 10.6052/0459-1879-12-338
Zheng Yuxuan, Chen Lei, Hu Shisheng, Zhou Fenghua. CHARACTERISTICS OF FRAGMENT SIZE DISTRIBUTION OF DUCTILE MATERIALS FRAGMENTIZED UNDER HIGH STRAINRATE TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580-587. doi: 10.6052/0459-1879-12-338
Citation: Zheng Yuxuan, Chen Lei, Hu Shisheng, Zhou Fenghua. CHARACTERISTICS OF FRAGMENT SIZE DISTRIBUTION OF DUCTILE MATERIALS FRAGMENTIZED UNDER HIGH STRAINRATE TENSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580-587. doi: 10.6052/0459-1879-12-338

韧性材料冲击拉伸碎裂中的碎片尺寸分布规律

doi: 10.6052/0459-1879-12-338
基金项目: 国家自然科学基金(10972108, 11272163); 浙江省重中之重"近海冲击与安全"项目开放课题(zj1118)和宁波大学王宽诚幸福基金资助项目.
详细信息
    通讯作者:

    周风华,研究员,主要研究方向:冲击动力学和断裂力学.E-mail:fzhou@nbu.edu.cn

  • 中图分类号: O346.1

CHARACTERISTICS OF FRAGMENT SIZE DISTRIBUTION OF DUCTILE MATERIALS FRAGMENTIZED UNDER HIGH STRAINRATE TENSION

Funds: The project was supported by the National Natural Science Foundation of China (10972108, 11272163), a grant from the Impact and Safety of Coastal Engineering Initiative, a COE Program of Zhejiang Provincial Government at Ningbo University (zj1118) and the K. C. Wong Magna Fund of Ningbo University.
  • 摘要: 利用有限元方法模拟韧性金属圆环高速膨胀过程中的碎裂过程, 获得不同初始膨胀速度下碎片的样本集合. 通过对碎片的尺寸进行统计分析发现:(1)无论初始膨胀速度如何, 碎片的归一化尺寸分布具有相似性, 可以用一个具有初始阈值的Weibull分布描述, 近似地, 这个分布还可以简化为Rayleigh分布;(2)碎片尺寸的累积分布曲线呈现阶梯特性, 表现出较明显的"量子化"特性.在上述发现基础上, 建立一个Monte-Carlo模型:碎裂点来自于颈缩点, 颈缩之间的间距满足某种连续的Weibull分布, 而碎片的尺寸为随机的若干个颈缩间距之和.概率模拟表明:除非早期的颈缩间距分布很宽, 否则选择的离散性必然导致碎片尺寸分布呈现某种量子化特性.采用L04工业纯铝和无氧铜试件进行了爆炸膨胀碎裂实验, 回收得到的碎片尺寸分布结果与理论分析基本一致.

     

  • Mott NF. A theory of the fragmentation of shells and bombs. Ministry of Supply, AC4035, 1943
    Grady DE. Local inertial effects in dynamic fragmentation. Journal Applied Physics, 1982, 53: 322-325  
    Grady DE, Benson DA. Fragmentation of metal rings by electromagnetic loading. Experimental Mechanics, 1983, 23(4): 393-400  
    Grady DE, Kipp ME. Geometric statistics and dynamic fragmentation. Journal Applied Physics, 1985, 58(3): 1210-1222  
    Grady DE, Olsen ML. A statistics and energy based theory of dynamic fragmentation. International Journal of Impact Engineering, 2003, 29(1-10): 293-306  
    Zhang H, Ravi-Chandar K. On the dynamics of necking and fragmentation——I. Real-time and post-mortem observations in Al 6061-O. International Journal of Fracture, 2006, 142(3-4): 183-217
    Miller O, Freund LB, Needleman A. Modeling and simulation of dynamic fragmentation in brittle materials. International Journal of Fracture, 1999, 96: 101-125  
    Zhou F, Molinari JF, Ramesh KT. A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution. International Journal of Solids and Structures, 2005, 42(18-19): 5181-5207
    Kipp ME, Grady DE. Dynamic fracture growth and interaction in one dimension. Journal of the Mechanics and Physics of Solids, 1985, 33(4): 399-415  
    Mott NF. Fragmentation of shell cases. Proc R Soc London, Ser A, 1947, 189(1018): 300-308  
    陈磊, 周风华, 汤铁钢. 韧性金属圆环高速膨胀碎裂过程的有限元模拟. 力学学报, 2011, 43(5): 861-870 (Chen Lei, Zhou Fenghua, Tang Tiegang. Finite element simulations of the high velocity expansion and fragmentation of ductile metallic rings. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(5): 861-870 (in Chinese))
    郑宇轩, 胡时胜, 周风华. 韧性材料高应变率拉伸碎裂过程及材料参数影响. 固体力学学报, 2012, 33(4): 358-369 (Zheng Yuxuan, Hu Shisheng, Zhou Fenghua. High strainrate tensile fragmentation process of ductile materials and the effects of material parameters. Acta Mechanica Solida Sinica, 2012, 33(4): 358-369 (in Chinese))
    Ishii T, Matsushita M. Fragmentation of long thin glass rods. Journal of the Physical Society of Japan, 1992, 61(10): 3474-3477  
    Oddershede L, Dimon P, Bohr J. Self-organized criticality in fragmenting. Physical Review Letters, 1993, 71(19): 3107-3110  
    Marsili M, Zhang YC. Probabilistic fragmentation and effective power law. Physical Review Letters, 1996, 77(17): 3577-3580  
    Meibom A, Balslev I. Composite power laws in shock fragmentation. Physical Review Letters, 1996, 76(14): 2492-2494  
    Kadono T. Fragment mass distribution of platelike objects. Physical Review Letters, 1997, 78(8): 1444-1447  
    Inaoka H, Toyosawa E, Takayasu H. Aspect ratio dependence of impact fragmentation. Physical Review Letters, 1997, 78(18): 3455-3458  
    Brown WK, Wohletz KH. Derivation of the Weibull distribution based on physical principles and its connection to the Rosin-Rammler and lognormal distributions. Journal of Applied Physics, 1995, 78(4): 2758-2763  
    Grady DE. Fragmentation of Rings and Shells: The Legacy of N.F. Mott. Spring. 2006
    Grady DE. Application of survival statitics to the Impulsive fragmentation of ductile rings. In: Meyers MA, Murr LE, eds. Shock Waves and High-Strain-Rate Phenomena in Metals. New York and London: Plenum, 1981. 181-192
    Zhou F, Molinari JF, Ramesh KT. Characteristic fragment size distributions in dynamic fragmentation. Applied Physics Letters, 2006, 88(26): 261918  
    Walsh JM. Plastic instability and particulation in stretching metal jets. Journal Applied Physics, 1984, 56(7): 1997-2006  
    Chou PC, Carleone J. The stability of shaped-charge jets. Journal Applied Physics, 1977, 48(10): 4187-4195  
    Zhou F, Molinari JF, Ramesh KT. An elastic-visco-plastic analysis of ductile expanding ring. International Journal of Impact Engineering, 2006, 33(1-12): 880-891  
  • 加载中
计量
  • 文章访问数:  1236
  • HTML全文浏览量:  57
  • PDF下载量:  1115
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-29
  • 修回日期:  2013-01-12
  • 刊出日期:  2013-07-18

目录

    /

    返回文章
    返回