BORDER-COLLISION BIFURCATION IN A KIND OF NON-SMOOTH MAPS
-
摘要: 对于一类分段映射讨论了非线性幂次z导致的不同非光滑性, 推导了周期n 解的边界碰撞分岔及光滑flip和fold 分岔条件. 通过数值仿真验证了这些分岔条件的正确性, 发现存在稳定周期窗的加周期分岔序列是非光滑映射的一个普遍现象, 根本原因在于边界碰撞分岔和光滑flip 或fold 分岔相互作用. 当z取值不同分岔序列有很大的不同, 而参数γ 对于分岔序列的结构影响不大, 因此令参数γ=0 可简化映射的参数分析.Abstract: For a kind of piecewise map, its nonsmoothness with the parameter z is discussed, and the conditions for border-collision bifurcation and smooth flip/fold bifurcation are derived. These bifurcation conditions are verified by numerical simulation, and the period-adding bifurcation scenario is a general phenomenon for non-smooth maps. The bifurcation scenario is rooted on the interrelation between border-collision bifurcation and smooth flip/fold bifurcation. The parameter z has important effect on the bifurcation scenario, but the parameter has a minor effect, so the analysis γ on bifurcation scenarios with parameters can be simplified by giving γ=0.
-
Key words:
- nonsmooth /
- discontinuous /
- border collision /
- bifurcation conditions /
- bifurcation scenarios
-
1 Mo J, Li YY,Wei CL, et al. Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chin Phys B,2010, 19(8): 080513-1-16 2 Zhao XP, Schaeffer DG, Berger CM, et al. Cardiac alternans arising from an unfolded border-collision bifurcation. Journal of Computational and Nonlinear Dynamics, 2008, 3(10): 041004-1-7 3 Kumar A, Banerjee S, Lathrop DP. Dynamics of a piecewise smooth map with singularity. Physics Letters A, 2005, 337: 87-92 4 沙金,包伯成,许建平等. 脉冲序列控制电流断续模式Buck 变 换器的动力学建模与边界碰撞分岔. 物理学报,2012, 61(12):12051-1-13 (Sha Jin, Bao Bocheng, Xu Jianping, et al. Dynamical modeling and border collision bifurcation in pulse train controlled discontinuous conduction mode buck converter. Acta Phys Sin, 2012, 61(12): 12051-1-13 (in Chinese)) 5 Banerjee S, Parui S, Gupta A. Dynamical effects of missed switching in current-mode controlled DC-DC converters. IEEE Transactions on Circuits and Systems-II: Express Brief, 2004, 51(12): 649-654 6 Nusse H, Ott E, Yorke J. Border-collision bifurcations: an explanation for observed bifurcation phenomena. Physical Review E, 1994,49(1): 1073-1076 7 Nordmark A. Non-periodic motion caused by grazing incidence in impact oscillators. Journal of Sound and Vibration, 1991, 145(2):279-297 8 di Bernardo M, Kowalczyk P, Nordmark A. Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings. Physica D, 2002, 170(1): 175-205 9 秦志英,陆启韶.非光滑分岔的映射分析.振动与冲击,2009,28(6):79-81 (Qin Zhiying, Lu Qishao. Map analysis of nonsmooth bifurcation. Vibration and Shock, 2009, 28(6): 79-81 (in Chinese)) 10 Qin ZY, Yang JC, Banerjee S, et al. Border-collision bifurcations in a generalized piecewise linear-power map. Discrete and Continuous Dynamical System-Series B, 2011, 16(2): 547-567 -

计量
- 文章访问数: 1572
- HTML全文浏览量: 42
- PDF下载量: 788
- 被引次数: 0