THEORETICAL ANALYSIS AND EXPERIMETNAL VERIFICATION FOR PAINLEV碋 PARADOX
-
摘要: 含摩擦的多体系统可能存在Painlevé 疑难奇异性—— 多体系统的后续运动可能存在无解(非协调状态)或者多解(不确定状态). 实际系统总要运动下去, 而对应于非协调奇异性状态的多体系统将经历怎样的运动值得探讨. 从计算、实验和理论证明3 个角度研究Painlevé 疑难问题, 验证和证明了多体系统处于非协调状态时其后续运动的切向冲击特征, 并揭示了切向冲击运动的共同规律.
-
关键词:
- Painlevé 疑难 /
- 多体系统 /
- 切向冲击
Abstract: Painlevé paradox may appear in multi-rigid-body systems subjected to Coulomb’ friction. No solution or multiple solutions make the systems inconsistent or indeterminate. It is worth investigating how the subsequent motions of the systems in inconsistent states evolve since the actual systems will always move on. The theoretical analysis and the experimental verification are carried out to confirm the tangential impact in the inconsistent case of the systems. The characteristic of the stick motions are confirmed during tangential impact.-
Key words:
- Painlevé paradox /
- multi-body system /
- tangential impact
-
1 Painlevé P. Sur les Lois du Ffrottement de Glissement. C R Hebd Seances Acad Sci, 1895, 121: 112-115 (in French) 2 Brogliato B. Nonsmooth Mechanics, Models, Dynamics and Control. London: Springer-Verlag London Limited, 1999 3 姚文丽, 徐鉴. 考虑奇异性的平面多刚体系统冲击问题理论解. 振 动工程学报, 2009, 22(1): 65-69 (Yao Wenli, Xu Jian. Theoretical dynamical impact solution on planar multi-rigid-body systems considering singularity. Journal of Vibration Engineering, 2009, 22(1):65-69 (in Chinese)) 4 Song P, Kraus P, Kumar V, et al. Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. Journal of Applied Mechanics, 2001, 68: 118-128 5 Shivaswamy S. Modeling contact forces and energy dissipation during impact in mechanical systems. [PhD Thesis]. Ann Arbor MI: UMI, 2002 6 Zhao Z, Chen B, Liu CS. Impact model resolution on Painlevé paradox. Acta Mechanica Sinica, 2004, 20(6): 659-660 7 Zhao Z, Liu CS, Chen B. The Painlevé paradox studied at a 3D slender rod. Multibody Syst Dyn, 2008, 19: 323-343 8 Genot F, Brogliato B. New results on Painlevé paradoxes. Eur J Mech A/Solids, 1999, 18: 653-677 9 Liu CS, Zhen Z, Chen B. The bouncing motion appearing in a robotic system with unilateral constraint. Nonlinear Dynamics,2007, 49 (1-2): 217-232 10 Zhao Z, Liu CS, Ma W, et al. Experimental investigation of the Painlevé paradox in a robotic System. J Appl Mech, 2008, 75(4):041006 -

计量
- 文章访问数: 1743
- HTML全文浏览量: 49
- PDF下载量: 862
- 被引次数: 0