EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非淹没丁坝绕流的三维大涡模拟研究

白静 方红卫 何国建

白静, 方红卫, 何国建. 非淹没丁坝绕流的三维大涡模拟研究[J]. 力学学报, 2013, 45(2): 151-157. doi: 10.6052/0459-1879-12-309
引用本文: 白静, 方红卫, 何国建. 非淹没丁坝绕流的三维大涡模拟研究[J]. 力学学报, 2013, 45(2): 151-157. doi: 10.6052/0459-1879-12-309
Bai Jing, Fang Hongwei, He Guojian. STUDY OF NON-SUBMERGED GROIN TURBULENCE FLOW IN A SHALLOW OPEN CHANNEL BYLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 151-157. doi: 10.6052/0459-1879-12-309
Citation: Bai Jing, Fang Hongwei, He Guojian. STUDY OF NON-SUBMERGED GROIN TURBULENCE FLOW IN A SHALLOW OPEN CHANNEL BYLES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 151-157. doi: 10.6052/0459-1879-12-309

非淹没丁坝绕流的三维大涡模拟研究

doi: 10.6052/0459-1879-12-309
基金项目: 国家自然科学基金资助项目(51139003).
详细信息
    通讯作者:

    白静,博士生,主要研究方向:水沙数值模拟.E-mail:bai-j08@mails.tsinghua.edu.cn

  • 中图分类号: TV143

STUDY OF NON-SUBMERGED GROIN TURBULENCE FLOW IN A SHALLOW OPEN CHANNEL BYLES

Funds: The project was supported by the National Natural Science Foundation of China (51139003).
  • 摘要: 采用动态亚格子模式和浸没边界法,对宽浅槽道中的丁坝群绕流的水动力学特性进行了三维大涡模拟研究. 利用丁坝绕流,试验中采用粒子图像测速仪(particle image velocimetry, PIV)测量的试验中自由水面处的时间平均流速和湍动强度数据对模型进行率定,结果表明计算结果与试验数据吻合良好. 丁坝长度与丁坝之间距离的比值L/D对丁坝周围的水流流动形式、湍流强度、涡量分布有显著影响. 在L保持不变并且L/D较大时,丁坝之间的距离D较小,这限制了混合层的发展,因此混合层中的湍动强度和涡量都较小;同时丁坝之间的回流区的流线形式也发生明显变化. 此外,还给出了涡体在丁坝坝头附近产生,发展并向下游输运的动态过程.

     

  • Przedwojski B. Bed topography and local scour in rivers with banks protected by groynes. J Hydraul Res, 1995, 33(2): 257-273  
    Wu BS, Wang GQ, Ma JM, et al. Case study: River training and its effects on fluvial processes in the Lower Yellow River. China J Hydraul Eng ASCE, 2005, 131(2): 85-96  
    Pinter N, Thomas R, Wlosinski JH. Assessing flood hazard on dynamic rivers. Eos, Transactions American Geophysical Union, 2001, 82(31): 333-339
    Liu QQ. Laboratory study on sediment diffusion and deposition into blind channels. Adv Water Resour, 2006, 29(12): 1804-1814  
    Fang HW, Wang GQ. Three-dimensional mathematical model of suspended-sediment transport. J Hydraul Eng ASCE, 2000, 126(8): 578-592  
    Hinterberger C, Froehlich J, Rodi W. Three-dimensional and depth-averaged large-eddy simulations of some shallow water flows. J Hydraul Eng ASCE, 2007, 133(8): 857-872  
    Koken M, Constantinescu G. An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 1. Conditions corresponding to the initiation of the erosion and deposition process. Water Resour Res, 2008, 44(8): W08406-1-19
    Koken M, Constantinescu G. An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 2. Conditions corresponding to the final stages of the erosion and deposition process. Water Resour Res, 2008, 44(8): W08407-1-16
    McCoy A, Weber LJ, Constantinescu G. Numerical investigation of flow hydrodynamics in a channel with a series of groynes. J Hydraul Eng ASCE, 2008, 134(2): 157-172  
    Constantinescu G, Sukhodolov A, McCoy A. Mass exchange in a shallow channel flow with a series of groynes: LES study and comparison with laboratory and field experiments. Environ Fluid Mech, 2009, 9(6): 587-615  
    Weitbrecht V. Influence of dead-water zones on the dispersive mass transport in rivers. [PhD Thesis]. Karlsruhe: Karlsruhe Institute of Technology, 2004
    Pope SB. Turbulent Flows. Cambridge:Cambridge University Press, 2000
    Smagorinsky J. General circulation experiments with the primitive equations. Mon Weather Rev, 1963, 91(3): 99-164  2.3.CO;2">
    Germano M, Piomelli U, Moin P, et al. A dynamic subgrid-scale eddy viscosity model. Phys Fluids, 1991, 3(7): 1760-1765  
    Breuer M, Rodi W. Large-eddy simulation of turbulent flow through a straight square duct and a 180o bend. In: Voke PR, Kleiser L, Chollet JP, eds. Direct and Large-Eddy Simulation I, Kluwer, Netherlands, 1994. 273-285
    Stone HL. Iterative solution of implicit approximations of multidimensional partial differential equations. SIAM J Numer Anal, 1968, 5(3): 530-558  
    Werner H, Wengle H. Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In: Proceeding of 8th Symposium on Turbulent Shear Flows, 1991. 155-168
    Peskin CS. Flow patterns around heart valves: A numerical method. J Comput Phys, 1972, 10(2): 252-271  
    Fadlun EA, Verzicco R, Orlandi P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J Comput Phys, 2000, 161(1): 35-60  
    Mohd-Yusof J. Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries. In: CTR Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ., 1997. 317-327
    Peller N, Le Duc A, Tremblay F, et al. High-order stable interpolations for immersed boundary methods. Int J Numer Meth Fluids, 2006, 52(11): 1175-1193  
    曹志先. 基于湍流猝发的床面泥沙上扬通量. 水利学报, 1996, 27(05): 18-21,28 (Cao Zhixian. Turbulect bursting-based sediment pick-up flux from loose bed. Journal of Hydraulice Engineering, 1996, 27(05): 18-21,28 (in Chinese))
  • 加载中
计量
  • 文章访问数:  2061
  • HTML全文浏览量:  46
  • PDF下载量:  2062
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-08
  • 修回日期:  2013-01-31
  • 刊出日期:  2013-03-18

目录

    /

    返回文章
    返回