EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑位移补偿的结构几何稳定性拓扑优化

苏文政 张永存 刘书田

苏文政, 张永存, 刘书田. 考虑位移补偿的结构几何稳定性拓扑优化[J]. 力学学报, 2013, 45(2): 214-222. doi: 10.6052/0459-1879-12-295
引用本文: 苏文政, 张永存, 刘书田. 考虑位移补偿的结构几何稳定性拓扑优化[J]. 力学学报, 2013, 45(2): 214-222. doi: 10.6052/0459-1879-12-295
Su Wenzheng, Zhang Yongcun, Liu Shutian. TOPOLOGY OPTIMIZATION FOR GEOMETRIC STABILITY OF STRUCTURES WITH COMPENSATION DISPLACEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 214-222. doi: 10.6052/0459-1879-12-295
Citation: Su Wenzheng, Zhang Yongcun, Liu Shutian. TOPOLOGY OPTIMIZATION FOR GEOMETRIC STABILITY OF STRUCTURES WITH COMPENSATION DISPLACEMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 214-222. doi: 10.6052/0459-1879-12-295

考虑位移补偿的结构几何稳定性拓扑优化

doi: 10.6052/0459-1879-12-295
基金项目: 国家自然科学基金(11002031,11202246,11172052),辽宁省博士科研启动基金(20101008)和辽宁省高校优秀人才支持计划(LJQ2012040)资助项目.
详细信息
    通讯作者:

    苏文政,副教授,主要研究方向:结构优化及材料和结构的一体化设计.E-mail:wzhsu@djtu.edu.cn

  • 中图分类号: O342

TOPOLOGY OPTIMIZATION FOR GEOMETRIC STABILITY OF STRUCTURES WITH COMPENSATION DISPLACEMENTS

Funds: The project was supported by the National Natural Science Foundation of China (11002031, 11202246, 11172052), the Liaoning Province Doctor Startup Fund (20101008) and Program for Liaoning Excellent Talents in University (LJQ2012040).
  • 摘要: 大量工程问题要求结构的局部区域在不同承载工况下保持位移响应的几何稳定性. 在结构的特定区域引入可以随承载工况调节的补偿位移是实现这一目标的有效手段. 在线弹性小变形范围内,通过最小的变形控制成本,研究了多工况下使结构特定位置的位移响应保持几何稳定性的拓扑优化问题. 设计目标为在保持结构位移响应几何稳定性的同时实现结构的最大刚度;优化模型包含两类设计变量:结构拓扑变量及补偿位移变量,两类变量采用分层寻优技术进行耦合. 采用伴随法分别推导了目标函数对两类设计变量的敏度求解格式. 结果表明,该优化模型能够在兼顾成本的同时较好地实现结构的变形控制目标.

     

  • 杨东武, 仇原鹰, 段宝岩. 预应力索网天线结构优化设计. 应用力学学报, 2008, 25(4): 617-622 (Yang Dongwu, Qiu Yuanying, Duan Baoyan. New method for prestressed astromesh deployable antenna design. Chinese Journal Of Applied Mechanics, 2008, 25(4): 617-622 (in Chinese))
    隋允康, 龙连春. 智能抛物面天线多目标最优控制. 计算力学学报, 2005, 22(6): 671-677 (Sui Yunkang, Long Lianchun. Multi-objective optimum control of intel ligent parabolic antennas. Chinese Journal of Computational Mechanics, 2005, 22(6): 671-677 (in Chinese))
    Bendsoe MP, Diaz A, Kikuchi N. Topology and generalized layout optimization of elastic structures. In: Bendsoe MP, Soares CAM, editors. Topology Design of Structures. Boston: Kluwer Academic Publishers, 1993. 159-205
    Pedersen P, Pedersen N. Design objectives with non-zero prescribed support displacements. Structural and Multidisciplinary Optimization, 2011, 43(2): 205-214  
    Niu F, Xu S, Cheng G. A general formulation of structural topology optimization for maximizing structural stiffness. Structural and Multidisciplinary Optimization, 2011, 43(4): 561-572  
    苏文政. 基于偶应力理论的多孔固体材料与结构的分析与设计. [博士论文]. 大连: 大连理工大学, 2009 (Su Wenzheng. Material and structural analysis and design of cellular solids based on the couple-stress theory. [PhD Thesis]. Dalian: Dalian University of Technology, 2009 (in Chinese))
    Svanberg K. The method of moving asymptotes-A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(22): 359-373
    Nishiwaki S, Frecker MI, Min S, et al. Topology optimization of compliant mechanisms using the homogenization method. International Journal for Numerical Methods in Engineering, 1998, 42(3): 535-559  3.0.CO;2-J" target=_blank>
    Pedersen CBW, Buhl T, Sigmund O. Topology synthesis of large-displacement compliant mechanisms. International Journal for Numerical Methods in Engineering, 2001, 50(12): 2683-2705  
    Irschik H. A review on static and dynamic shape control of structures by piezoelectric actuation. Engineering Structures, 2002, 24(1): 5-11  
  • 加载中
计量
  • 文章访问数:  1529
  • HTML全文浏览量:  84
  • PDF下载量:  763
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-26
  • 修回日期:  2012-12-27
  • 刊出日期:  2013-03-18

目录

    /

    返回文章
    返回