EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同润湿性纳米通道内库埃特流动的模拟

胡海豹 鲍路瑶 黄苏和

胡海豹, 鲍路瑶, 黄苏和. 不同润湿性纳米通道内库埃特流动的模拟[J]. 力学学报, 2013, 45(4): 507-514. doi: 10.6052/0459-1879-12-244
引用本文: 胡海豹, 鲍路瑶, 黄苏和. 不同润湿性纳米通道内库埃特流动的模拟[J]. 力学学报, 2013, 45(4): 507-514. doi: 10.6052/0459-1879-12-244
Hu Haibao, Bao Luyao, Huang Suhe. SIMULATION OF THE LIQUID COUETTE FLOW IN A NANO-CHANNEL WITH DIFFERENT WETTABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 507-514. doi: 10.6052/0459-1879-12-244
Citation: Hu Haibao, Bao Luyao, Huang Suhe. SIMULATION OF THE LIQUID COUETTE FLOW IN A NANO-CHANNEL WITH DIFFERENT WETTABILITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 507-514. doi: 10.6052/0459-1879-12-244

不同润湿性纳米通道内库埃特流动的模拟

doi: 10.6052/0459-1879-12-244
基金项目: 国家自然科学基金(50835009, 51109178)和高等学校博士学科点专项科研基金(20116102120009)资助项目.
详细信息
    通讯作者:

    胡海豹,副教授,主要研究方向:水下特种减阻技术及微流动的数值仿真研究.E-mail:huhaibao@nwpu.edu.cn

  • 中图分类号: O647

SIMULATION OF THE LIQUID COUETTE FLOW IN A NANO-CHANNEL WITH DIFFERENT WETTABILITY

Funds: The project was supported by the National Natural Science Foundation of China (50835009, 51109178) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20116102120009).
  • 摘要: 利用非平衡分子动力学模拟方法, 模拟了两无限大平行平板组成的纳米通道内的库埃特流动, 并给出了壁面润湿性和速度对流场密度、速度分布及壁面滑移的影响规律.数值模拟中, 统计系综采用微正则系综, 势能函数选用LJ/126模型, 壁面设为刚性原子壁面, 温度校正使用速度定标法, 牛顿运动方程的求解则采用文莱特算法.结果表明, 纳米通道内流体密度呈对称的衰减振荡分布, 且随壁面润湿性的降低, 振荡幅度减小, 振荡周期保持不变;滑移量随壁面润湿性的提高而降低, 甚至在亲水壁面时出现负滑移现象;随壁面速度的增加滑移速度逐渐增大, 且在流体呈现非线性流动阶段其增幅显著加大.另外, 还发现当壁面设置为超疏水性时, 壁面滑移呈现出随润湿性降低而减小的反常现象, 并基于杨氏方程对其进行了解释.

     

  • 蒋雄,乔生儒, 张程煜等. 疏水表面及其减阻研究.化学进展, 2008, 20(4):450-456 (Jiang Xiong, Qiao Shengru, Zhang Chenyu, et al. Hydrophobic surface and its application to drag reduction. Progress in Cemistry, 2008, 20(4): 450-456 (in Chinese))
    Luo Zhuangzhu, Zhang Zhaozhu, Hu Litian, et al. Stable bionic superhydrophobic coating surface fabricated by a conventional curing process. Advanced Materials, 2008, 14(20): 970-974
    余永生,魏庆鼎.疏水性材料减阻特性实验研究.流体力学实验与测量,2005,19(2): 60-66 (Yu Yongsheng, Wei Qingding. Experiments on the drag-reduction of non-wetting materials. Experiments and Measurements in Fluid Mechanics, 2005, 19(2): 60-66 (in Chinese))
    霍素斌,于志家,李艳峰等. 超疏水表面微通道内水的流动特性.化工学报,2007,58(11): 2721-2726 (Huo Subin, Yu Zhijia, Li Yanfeng, et al. Flow characteristics of water in microchannel with super-hydrophobic surface. Journal of Chemical Industry and Engineering, 2007, 58(11): 2721-2726 (in Chinese))
    Ou J, Perot B, Rothstein JP. Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Physics of Fluids, 2004, 16: 4635  
    Choi CH, Kim CJ. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Physical Review Letters, 2006, 96(6): 066001  
    卢思,姚朝晖,郝鹏飞等.具有微纳结构超疏水表面的槽道减阻特性研究.中国科学:物理学 力学 天文学, 2010, 40(7): 916-924 (Lu Si, Yao Zhaohui, Hao Pengfei, et al. Investigation of drag reduction of superhydrophobic surface with micro-nanostructure. Scientia Sinica Phys, Mech & Astron, 2010, 40(7): 916-924 (in Chinese))
    Lauga E, Stone HA. Effective slip in pressure-driven Stokes flow. Journal of Fluid Mechanics, 2003, 489: 55-77  
    吕田,陈晓玲.超疏水性圆管湍流减阻的数值模拟.上海交通大学学报,2009,43(8): 1280-1283 (Lü Tian, Chen Xiaoling. Numerical simulation of drag reduction of circular pipe with superhydrophobic wall in turbulent flow. Journal of Shanghai Jiaotong University, 2009, 43(8): 1280-1283 (in Chinese))
    Thompson PA, Robbins MO. Shear flow near solids: epitaxial order and flow boundary conditions. Physical Review A, 1990, 41: 6830  
    Thompson PA, Troian SM. A general boundary condition for liquid flow at solid surfaces. Nature, 1997, 389: 360  
    Priezjev NV, Troian SM. Molecular origin and dynamic behavior of slip in sheared polymer films. Physical Review Letters, 2004, 92: 018302.  
    Soong CY, Yen TH, Tzeng PY. Molecular dynamics simulation of nanochannel flows with effects of wall lattice-fluid interactions. Physical Review E, 2007, 76: 036303  
    曹炳阳,陈民,过增元. 纳米通道滑移流动的分子动力学研究. 工 程热物理学报,2003,24(4):670-672 (Cao Bingyang, Chen Min, Guo Zengyuan. Molecular dynamics study of slip flow in nanochannel. Journal of Engineering Thermophysics, 2003, 24(4):670-672 (in Chinese))
    曹炳阳,陈民,过增元. 纳米通道内液体流动的滑移现象. 物理学报,2006,10(55):5305-5310 (Cao Bingyang, Chenmin, Guo Zengyuan. Velocity slip of liquid flow in nanochannels. Acta Physica Sinica, 2006, 10(55):5305-5310 (in Chinese))
    Voronov RS, Dimitrios VP, Lloyd LL. Slip length and contact angle over hydrophobic surfaces. Chemical Physics Letters, 2007, 441: 273-276  
    Cieplak M, Koplik J, Jayanth RB. Boundary conditions at a fluid-solid interface. Physical Review Letters, 2001, 86(5): 803-806  
    Gogte S, Vorobieff P, Truesdell R, et al. Effective slip on textured superhydrophobic surfaces. Physics of Fluids, 2005, 17: 051701  
    Ellis JS, McHale G, Hayward GL, et al. Contact angle-based predictive model for slip at the solid-liquid interface of a transverse-shear mode acoustic wave device. Applied Physics Letters, 2003, 94: 6201
    Evans DJ, Morriss GP. Shear thickening and turbulence in simple fluids. Physical Review Letters, 1986, 56: 2172  
    向恒,姜培学,刘其鑫等. 纳米通道内液体流动的分子动力学研究. 工程热物理学报,2008,29(9):1557-1560 (Xiang Heng, Jiang Peixue, Liu Qixin, et al. Molecular dynamics investigation of fluid flow in nanochannels. Journal of Engineering Thermophysics, 2008,29(9):1557-1560 (in Chinese))
    Voronov RS, Dimitrios VP, Lloyd LL. Boundary slip and wetting properties of interfaces: Correlation of the contact angle with the slip length. Journal of Chemical Physics, 2006, 124: 204701  
    De Gennes PG. Wetting: Statics and dynamics. Reviews of Modern Physics, 1985, 57 (3): 827-863
    卡尼亚达克斯,柏斯考克. 微流动-基础与模拟. 北京:化学工业出版社,2005 (Karniadakis GE, Beskok A. Micro Flows Fundamentals and Simulation. Beijing: Chemical Industry Press, 2005 (in Chinese))
    Huang DM, Sendner C, Horinek D, et al. Water slippage versus contact angle: A quasiuniversal relationship. Physical Review Letters, 2008, 101: 226101  
    Ma MD, Shen LM, Sheridan J, et al. Friction of water slipping in carbon nanotubes. Physical Review E, 2011, 83: 036316  
    Xin Y, Lucy TZ. Investigating liquid-solid interfacial phenomena in a Couette flow at nanoscale. Physical Review E, 2010, 82: 056313  
    Young T. An essay on the cohesion of fluids. Phil Trans R Soc Lond, 1805, 95: 65-87  
  • 加载中
计量
  • 文章访问数:  1742
  • HTML全文浏览量:  94
  • PDF下载量:  876
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-07
  • 修回日期:  2013-02-22
  • 刊出日期:  2013-07-18

目录

    /

    返回文章
    返回