EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂隙挤喷流对孔隙介质排水体积模量的影响

宋永佳 胡恒山

宋永佳, 胡恒山. 裂隙挤喷流对孔隙介质排水体积模量的影响[J]. 力学学报, 2013, 45(3): 395-405. doi: 10.6052/0459-1879-12-230
引用本文: 宋永佳, 胡恒山. 裂隙挤喷流对孔隙介质排水体积模量的影响[J]. 力学学报, 2013, 45(3): 395-405. doi: 10.6052/0459-1879-12-230
Song Yongjia, Hu Hengshan. EFFECTS OF SQUIRT-FLOW IN CRACKS ON DRAINED BULK MODULUS OF POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 395-405. doi: 10.6052/0459-1879-12-230
Citation: Song Yongjia, Hu Hengshan. EFFECTS OF SQUIRT-FLOW IN CRACKS ON DRAINED BULK MODULUS OF POROUS MEDIA[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 395-405. doi: 10.6052/0459-1879-12-230

裂隙挤喷流对孔隙介质排水体积模量的影响

doi: 10.6052/0459-1879-12-230
基金项目: 国家自然科学基金资助项目(41174110).
详细信息
    通讯作者:

    胡恒山,教授,主要研究方向:孔隙介质中的波.E-mail:hhs@hit.edu.cn

  • 中图分类号: O347

EFFECTS OF SQUIRT-FLOW IN CRACKS ON DRAINED BULK MODULUS OF POROUS MEDIA

Funds: The project was supported by the National Natural Science Foundation of China (41174110).
  • 摘要: 实际岩石比如沉积形成的岩石往往是裂隙和孔隙并存的孔隙介质. 由于扁状的裂隙与近似球形或圆管形的孔隙具有不同的可压缩性,当孔隙介质受压时,液体会从易压缩的裂隙中挤出流入不易压缩的孔隙中,这种挤喷流会引起弹性模量的频散和能量的耗散. 着重研究了裂隙挤喷流和液体可压缩性对孔道变形的影响,推导出了动载荷作用下排水体积模量的表达式. 与挤喷流相关的裂隙附加柔度会引起排水体积模量随频率变化,使得孔隙介质呈现黏弹性. 频率越高,模量的实部越大,岩石抵抗变形的能力越强. 而模量的虚部体现了挤喷流对能量的耗散. 裂隙密度主要决定模量频散的幅度以及能量耗散的强度,且裂隙密度越大,模量频散幅度越大,能量耗散也越强. 裂隙的纵横比主要决定模量频散速率最快或能量耗散最强时对应的特征频率. 若孔隙介质中不含有裂隙,即裂隙密度是0时,排水体积模量退化为Biot理论中的排水体积模量.

     

  • Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am, 1956, 28(2): 168-178  
    Biot MA. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J Acoust Soc Am, 1956, 28(2): 179-191  
    Biot MA. Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics, 1962, 33(4): 1482-1498  
    Skempton AW. The pore-pressure coefficients A and B. Geotechnique, 1954, 4: 143-147  
    Sams MS, Neep JP, Worthington MH, et al. The measurement of velocity dispersion and frequency-dependent intrinsic attenuation in sedimentary rocks. Geophysics, 1997, 62(5): 1456-1464  
    Pride SR, Berryman JG. Linear dynamics of double-porosity double-permeability materials I. Governing equations and acoustic attenuation. Physical Review E, 2003, 68: 036603  
    Pride SR, Berryman JG. Linear dynamics of double-porosity double-permeability materials II. Fluid transport equations. Physical Review E, 2003, 68: 036604  
    Pride SR, Berryman JG, Harris JM. Seismic attenuation due to wave-induced flow. Journal of Geophysical Research, 2004, 109: B01201
    Walsh JB. The effect of cracks on the compressibility of rock. Journal of Geophysical Research, 1965, 70(2): 381-389  
    Plona T. Observation of a second bulk compressional wave in porous medium at ultrasonic frequencies. Appl Phys Lett, 1980, 36: 259-261  
    唐晓明. 含孔隙、裂隙介质弹性波动的统一理论——Biot理论的推广. 中国科学: 地球科学, 2011, 41(6): 784-795 (Tang Xiaoming. A unified theory for elastic wave propagation through porous media containing cracks——An extension of Biot's poroelastic wave theory. Sci China Earth Sci, 2011, 41(6): 784-795 (in Chinese))
    陈颙, 黄庭芳, 刘恩儒. 岩石物理学. 合肥: 中国科学技术大学出版社, 2009. 85-86 (Chen Yong, Huang Tingfang, Liu Enru. Rock Physics. Hefei: University of Science and Technology of China Press, 2009. 85-86 (in Chinese))
    陈勉, 金衍, 张广清. 石油工程岩石力学. 北京: 科学出版社, 2008. 35 (Chen Mian, Jin Yan, Zhang Guangqing. Petroleum Engineering Rock Mechanics. Beijing: Science Press, 2008. 35 (in Chinese))
    Dvorkin J, Nur A. Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms. Geophysics, 1993, 58(4): 524-533  
    崔志文, 王克协, 曹正良等. 多孔介质BISQ模型中的慢纵波. 物理学报, 2004, 53(9): 3083-3089 (Cui Zhiwen, Wang Kexie, Cao Zhengliang, et al. Slow waves propagation in BISQ poroelastic model. Acta Physica Sinica, 2004, 53(9): 3083-3089 (in Chinese))
    Mavko G, Jizba D. Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics, 1991, 56(12): 1940-1949  
    宋永佳. 含裂隙的孔隙介质中弹性波衰减机制理论研究. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2012. 43-44 (Song Yongjia. A theoretical study on the attenuation of elastic waves in porous media containing cracks.[Master thesis]. Harbin: Harbin Institute of Technology, 2012. 43-44 (in Chinese))
    Murphy WF. Acoustic measures of partial gas saturation in tight sandstones. Journal of Geophysical Research, 1984, 89(B13): 11549-11559
    Murphy WF, Winkler KW, Kleinberg RL. Acoustic relaxation in sedimentary rocks: Dependence on grain contacts and fluid saturation. Geophysics, 1986, 51(3): 757-766  
    Berryman JG. Effective stress for transport properties of inhomogeneous porous rock. Journal of Geophysical Research, 1992, 97: 17409-17424  
    Thomsen L. Biot-consistent elastic moduli of porous rocks: low-frequency limit. Geophysics, 1985, 50(2): 2797-2807
    Tang XM, Cheng CH. A dynamic model for fluid flow in open borehole fractures. Journal of Geophysical Research, 1989, 94(B6): 7567-7576
    周光泉, 刘孝敏. 粘弹性理论. 合肥: 中国科学技术大学出版社, 1996. 55-61 (Zhou Guangquan, Liu Xiaomin. Viscoelasticity Theory. Hefei: University of Science and Technology of China Press, 1996. 55-61 (in Chinese))
  • 加载中
计量
  • 文章访问数:  1824
  • HTML全文浏览量:  116
  • PDF下载量:  1617
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-28
  • 修回日期:  2013-01-27
  • 刊出日期:  2013-05-18

目录

    /

    返回文章
    返回