EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非傅里叶热弹性的时域间断迦辽金有限元方法

郭攀 武文华 吴志刚

郭攀, 武文华, 吴志刚. 非傅里叶热弹性的时域间断迦辽金有限元方法[J]. 力学学报, 2013, 45(3): 447-450. doi: 10.6052/0459-1879-12-217
引用本文: 郭攀, 武文华, 吴志刚. 非傅里叶热弹性的时域间断迦辽金有限元方法[J]. 力学学报, 2013, 45(3): 447-450. doi: 10.6052/0459-1879-12-217
Guo Pan, Wu Wenhua, Wu Zhigang. TIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR GENERALIZED THERMO-ELASTIC WAVE OF NON-FOURIER EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 447-450. doi: 10.6052/0459-1879-12-217
Citation: Guo Pan, Wu Wenhua, Wu Zhigang. TIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR GENERALIZED THERMO-ELASTIC WAVE OF NON-FOURIER EFFECTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(3): 447-450. doi: 10.6052/0459-1879-12-217

非傅里叶热弹性的时域间断迦辽金有限元方法

doi: 10.6052/0459-1879-12-217
基金项目: 国家重点基础研究发展规划(2011CB013705),国家重大专项(2011ZX05026-002-02)和创新研究群体研究基金(50921001)资助项目.
详细信息
    通讯作者:

    武文华,副教授,主要研究方向:计算力学.E-mail:lxyuhua@dlut.edu.cn

  • 中图分类号: TK121

TIME DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR GENERALIZED THERMO-ELASTIC WAVE OF NON-FOURIER EFFECTS

Funds: The project was supported by the National Basic Research Program of China (2011CB013705), National Science and Technology Major Project of the Ministry of Science and Technology of China (2011ZX05026-002-02) and Innovation Research Group Research Fund (50921001).
  • 摘要: 基于Lord-Shulman非傅里叶热弹性模型,提出了采用修正的时域间断迦辽金有限元方法(time discontinuousGalerkin finite element method, DGFEM)求解方法. DGFEM对温度场、位移场基本未知向量及其时间导数向量在时域中分别插值;在最终的求解公式中,引入了人工阻尼. 数值结果显示所发展的DGFEM 较好地捕捉了波的间断并消除了热冲击作用下虚假的数值振荡,能够良好地模拟热弹性问题并具有较高的精度.

     

  • 田晓耕,沈亚鹏.广义热弹性问题研究进展.力学进展,2012, 42(1): 18-28 (Tian Xiaogeng,Shen Yapeng. Research progress in generalized thermoelastic problems. Advances in Mechanics, 2012, 42(1): 18-28 (in Chinese))
    蒋方明, 刘登瀛. 非傅里叶导热的最新研究进展. 力学进展, 2002, 32(1): 128-139 (Jiang Fangming, Liu Dengying. New progress on non-fourier heat conduction. Advances in Mechanics, 2002, 32(1): 128-139 (in Chinese))
    Tamma KK, Namburu RR. Computational approaches with applications to nonclassical and classical thermo-mechanical problems. Applied Mechanics Reviews, 1997, 50(9): 514-551  
    刘静等编著. 微米/纳米尺度传热学. 北京:科学出版社, 2001 (Liu Jing. Micro/nano Scale Heat Transfer. Beijing: Science Press, 2001 (in Chinese))
    Lord H, Shulman Y. A generalized dynamical theory of thermo-elasticity. Journal of the Mechanics and Physics of Solids, 1967, 15: 299-309  
    Green AE, Lindsay KE. Thermoelasticity. Journal of Elasticity, 1972, 2: 1-7  
    Green AE, Naghdi PM. Thermoelasticity without energy dissipation. Journal of Elasticity, 1993, 31: 189-208  
    Strunin DV, Melnik RVN, Roberts AJ. Coupled thermomechanical waves in hyperbolic thermoelasticity. Journal of Thermal Stresses, 2001, 24: 121-140
    Prevost JH, Tao D. Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. Journal of Applied Mechanics, 1983, 50: 817-822  
    Wu WH, Li XK. Application of the time discontinuous Galerkin finite element method to heat wave simulation. International Journal of Heat and Mass Transfer, 2006, 49 (9-10): 1679-1684
  • 加载中
计量
  • 文章访问数:  1204
  • HTML全文浏览量:  58
  • PDF下载量:  711
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-06
  • 修回日期:  2013-02-26
  • 刊出日期:  2013-05-18

目录

    /

    返回文章
    返回