EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩双裂纹和单裂纹圆孔板应力强度因子公式

倪敏 苟小平 王启智

倪敏, 苟小平, 王启智. 压缩双裂纹和单裂纹圆孔板应力强度因子公式[J]. 力学学报, 2013, 45(1): 94-102. doi: 10.6052/0459-1879-12-179
引用本文: 倪敏, 苟小平, 王启智. 压缩双裂纹和单裂纹圆孔板应力强度因子公式[J]. 力学学报, 2013, 45(1): 94-102. doi: 10.6052/0459-1879-12-179
Ni Min, Gou Xiaoping, Wang Qizhi. STRESS INTENSITY FACTOR FORMULAS FOR DCDC AND SCDC SPECIMENS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 94-102. doi: 10.6052/0459-1879-12-179
Citation: Ni Min, Gou Xiaoping, Wang Qizhi. STRESS INTENSITY FACTOR FORMULAS FOR DCDC AND SCDC SPECIMENS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 94-102. doi: 10.6052/0459-1879-12-179

压缩双裂纹和单裂纹圆孔板应力强度因子公式

doi: 10.6052/0459-1879-12-179
基金项目: 国家自然科学基金(51179115) 和深部岩土力学与地下工程国家重点实验室开放基金(SKLGDUEK1020) 资助项目.
详细信息
    通讯作者:

    王启智

  • 中图分类号: O346.1+1;TU458+.3

STRESS INTENSITY FACTOR FORMULAS FOR DCDC AND SCDC SPECIMENS

Funds: The project was supported by the National Natural Science Foundation of China (51179115) and the State Key Laboratory for Geomechanics and Deep Underground Engineering (SKLGDUEK1020).
  • 摘要: 从理论模型和数值分析上澄清了国外文献关于压缩双裂纹圆孔板(double cleavage drilled compression,DCDC) 的应力强度因子不同的公式引起的混淆. 证明Plaisted 等用修正压缩无限大板中圆孔双边裂纹的解和欧拉-伯努利梁理论得到的DCDC 应力强度因子公式都存在推导和原理性的失误. 指出Jenne 等推导的公式形式过于复杂不便使用, 而He 等的公式适用范围偏小. 通过拟合有限元法宽范围数值计算结果导出DCDC 的应力强度因子的新公式, 该公式形式简单, 对无量纲裂纹长度和无量纲板宽度适用范围较大, 最大误差是7%. 此外, 还对新提出的压缩单裂纹圆孔板(single cleavage drilled compression, SCDC)做了分析, 首次得到的SCDC应力强度因子公式的最大误差是5%. 给出的2 个公式可分别用于脆性材料DCDC 或SCDC 试样的断裂韧度测试.

     

  • 1 Janssen C. Specimen for fracture mechanics studies on glass. In: Proceedings of the 10th International Conference on Glass, Kyoto, Japan, 1974. 10.23-10.30
    2 Michalske TA, Fuller ER. Closure and repropagation of healed cracks in silicate glass. Journal of the American Ceramic Society,1985, 68(11): 586-590  
    3 Sammis CG, Ashby MF. The failure of brittle porous solids under compressive stress states. Acta Metallurgica, 1986, 34(3): 511-526  
    4 Ritter JE, Fox JR, Hutko DI, et al. Moisture-assisted crack growth at epoxy-glass interfaces. Journal of Materials Science, 1998, 33(18):4581-4588  
    5 Ritter JE, Huseinovic A, Chakravarthy S, et al. Subcritical crack growth in soda-lime glass under mixed-mode loading. Journal of the American Ceramic Society, 2000, 83: 2109-2111
    6 Chen X, Dam MA, Mal A, et al. A thermally remendable crosslinked polymeric material. Science, 2002, 295(5560): 1698-1702  
    7 Chen X, Wudl F, Mal A, et al. New thermally remendable highly cross-linked in a phosphate laser glass. Journal of the American Ceramic Society, 2003, 36: 1802-1807
    8 Bonamy D, Prades S, Ponson L, et al. Experimental investigation of damage and fracture in glassy materials at the nanometer scale. International Journal of Materials and Product Technology, 2006,26: 339-353
    9 Plaisted TA, Amirkhizi AV, Nemat-Nasser S. Compression-induced axial crack propagation in DCDC polymer samples: Experiments and modeling. International Journal of Fracture, 2006, 141: 447-457  
    10 Jenne TA, Keat WD, Larson MC. Limits of crack growth stability in the double cleavage drilled compression specimen. Engineering Fracture Mechanics, 2003, 70: 1697-1719  
    11 He MY, Turner MR, Evans AG. Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities. Acta Metallurgica et Materialia,1995, 43(9): 3453-3458  
    12 Fett T, Rizzi G, Guin JP, et al. A fracture mechanics analysis of the double cleavage drilled compression test specimen. Engineering Fracture Mechanics, 2009, 76: 921-934  
    13 Fett T, Munz D. Stress Intensity Factors and Weight Functions. Boston: Computational Mechanics Publications, Advances in Fracture Series, 1997
    14 Lardner TJ, Charkravarthy S, Quinn JD, et al. Further analysis of the DCDC specimen with an offset hole. International Journal of Fracture, 2001, 109: 227-237  
    15 Fett T, Rizzi G, Munz D. T-stress solution for DCDC specimens. Engineering Fracture Mechanics, 2005, 72: 145-149  
    16 Tada H, Paris PC, Irwin GR. The Stress Analysis of Cracks Handbook.2nd edn. St. Louis Missouri: Paris Production Inc; 1985
    17 Bueckner HF. A novel principle for the computation of stress intensity factors. Zietschrift fur Angewandt Mathematik und Mechnik,1970, 46:529-545
    18 倪敏,苟小平,王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩 石动态断裂韧度试验方法. 工程力学,2013, 30(1): 365-372 (Ni Min, Gou Xiaoping, Wang Qizhi. Test method for rock dynamic fracture toughness using single cleavage drilled compression specimen impacted by split Hopkinson pressure bar. Engineering Mechanics,2013, 30(1): 365-372 (in Chinese))
    19 Wang QZ. Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens. International Journal of Rock Mechanics and Mining Sciences, 2010,47: 1006-1011  
  • 加载中
计量
  • 文章访问数:  2283
  • HTML全文浏览量:  103
  • PDF下载量:  1034
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-12
  • 修回日期:  2012-10-09
  • 刊出日期:  2013-01-18

目录

    /

    返回文章
    返回