1 Janssen C. Specimen for fracture mechanics studies on glass. In: Proceedings of the 10th International Conference on Glass, Kyoto, Japan, 1974. 10.23-10.30
|
2 Michalske TA, Fuller ER. Closure and repropagation of healed cracks in silicate glass. Journal of the American Ceramic Society,1985, 68(11): 586-590
|
3 Sammis CG, Ashby MF. The failure of brittle porous solids under compressive stress states. Acta Metallurgica, 1986, 34(3): 511-526
|
4 Ritter JE, Fox JR, Hutko DI, et al. Moisture-assisted crack growth at epoxy-glass interfaces. Journal of Materials Science, 1998, 33(18):4581-4588
|
5 Ritter JE, Huseinovic A, Chakravarthy S, et al. Subcritical crack growth in soda-lime glass under mixed-mode loading. Journal of the American Ceramic Society, 2000, 83: 2109-2111
|
6 Chen X, Dam MA, Mal A, et al. A thermally remendable crosslinked polymeric material. Science, 2002, 295(5560): 1698-1702
|
7 Chen X, Wudl F, Mal A, et al. New thermally remendable highly cross-linked in a phosphate laser glass. Journal of the American Ceramic Society, 2003, 36: 1802-1807
|
8 Bonamy D, Prades S, Ponson L, et al. Experimental investigation of damage and fracture in glassy materials at the nanometer scale. International Journal of Materials and Product Technology, 2006,26: 339-353
|
9 Plaisted TA, Amirkhizi AV, Nemat-Nasser S. Compression-induced axial crack propagation in DCDC polymer samples: Experiments and modeling. International Journal of Fracture, 2006, 141: 447-457
|
10 Jenne TA, Keat WD, Larson MC. Limits of crack growth stability in the double cleavage drilled compression specimen. Engineering Fracture Mechanics, 2003, 70: 1697-1719
|
11 He MY, Turner MR, Evans AG. Analysis of the double cleavage drilled compression specimen for interface fracture energy measurements over a range of mode mixities. Acta Metallurgica et Materialia,1995, 43(9): 3453-3458
|
12 Fett T, Rizzi G, Guin JP, et al. A fracture mechanics analysis of the double cleavage drilled compression test specimen. Engineering Fracture Mechanics, 2009, 76: 921-934
|
13 Fett T, Munz D. Stress Intensity Factors and Weight Functions. Boston: Computational Mechanics Publications, Advances in Fracture Series, 1997
|
14 Lardner TJ, Charkravarthy S, Quinn JD, et al. Further analysis of the DCDC specimen with an offset hole. International Journal of Fracture, 2001, 109: 227-237
|
15 Fett T, Rizzi G, Munz D. T-stress solution for DCDC specimens. Engineering Fracture Mechanics, 2005, 72: 145-149
|
16 Tada H, Paris PC, Irwin GR. The Stress Analysis of Cracks Handbook.2nd edn. St. Louis Missouri: Paris Production Inc; 1985
|
17 Bueckner HF. A novel principle for the computation of stress intensity factors. Zietschrift fur Angewandt Mathematik und Mechnik,1970, 46:529-545
|
18 倪敏,苟小平,王启智. 霍普金森杆冲击压缩单裂纹圆孔板的岩 石动态断裂韧度试验方法. 工程力学,2013, 30(1): 365-372 (Ni Min, Gou Xiaoping, Wang Qizhi. Test method for rock dynamic fracture toughness using single cleavage drilled compression specimen impacted by split Hopkinson pressure bar. Engineering Mechanics,2013, 30(1): 365-372 (in Chinese))
|
19 Wang QZ. Formula for calculating the critical stress intensity factor in rock fracture toughness tests using cracked chevron notched Brazilian disc (CCNBD) specimens. International Journal of Rock Mechanics and Mining Sciences, 2010,47: 1006-1011
|