EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参强联合作用非线性结构动力学实验建模

朱辰钟 叶敏

朱辰钟, 叶敏. 参强联合作用非线性结构动力学实验建模[J]. 力学学报, 2013, 45(1): 116-128. doi: 10.6052/0459-1879-12-174
引用本文: 朱辰钟, 叶敏. 参强联合作用非线性结构动力学实验建模[J]. 力学学报, 2013, 45(1): 116-128. doi: 10.6052/0459-1879-12-174
Zhu Chenzhong, Ye Min. RESEARCH OF DYNAMIC EXPERIMENTAL MODELING FOR NONLINEAR STRUCTURE UNDER PARAMETRIC AND FORCED EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 116-128. doi: 10.6052/0459-1879-12-174
Citation: Zhu Chenzhong, Ye Min. RESEARCH OF DYNAMIC EXPERIMENTAL MODELING FOR NONLINEAR STRUCTURE UNDER PARAMETRIC AND FORCED EXCITATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 116-128. doi: 10.6052/0459-1879-12-174

参强联合作用非线性结构动力学实验建模

doi: 10.6052/0459-1879-12-174
基金项目: 国家自然科学基金资助项目(10672141).
详细信息
    通讯作者:

    叶敏

  • 中图分类号: O322

RESEARCH OF DYNAMIC EXPERIMENTAL MODELING FOR NONLINEAR STRUCTURE UNDER PARAMETRIC AND FORCED EXCITATION

Funds: The project was supported by the National Natural Science Foundation of China (10672141).
  • 摘要: 搭建以L 型梁为实验研究对象的参强联合作用多自由度非线性振动实验系统, 将增量谐波平衡非线性识别理论运用到实验建模方法中, 建立了L 型梁的动力学控制方程. 通过对不同激励频率和不同响应情况下的数值模拟与实验数据的比较, 验证了基于增量谐波平衡识别的实验建模方法对多自由度参强联合作用非线性动力学结构的有效性, 以及动力学控制方程的普适性.

     

  • 1 Mo J, Li YY,Wei CL, et al. Interpreting a period-adding bifurcation scenario in neural bursting patterns using border-collision bifurcation in a discontinuous map of a slow control variable. Chin Phys B,2010, 19(8): 080513-1-16  
    2 Zhao XP, Schaeffer DG, Berger CM, et al. Cardiac alternans arising from an unfolded border-collision bifurcation. Journal of Computational and Nonlinear Dynamics, 2008, 3(10): 041004-1-7
    3 Kumar A, Banerjee S, Lathrop DP. Dynamics of a piecewise smooth map with singularity. Physics Letters A, 2005, 337: 87-92  
    4 沙金,包伯成,许建平等. 脉冲序列控制电流断续模式Buck 变 换器的动力学建模与边界碰撞分岔. 物理学报,2012, 61(12):12051-1-13 (Sha Jin, Bao Bocheng, Xu Jianping, et al. Dynamical modeling and border collision bifurcation in pulse train controlled discontinuous conduction mode buck converter. Acta Phys Sin, 2012, 61(12): 12051-1-13 (in Chinese))
    5 Banerjee S, Parui S, Gupta A. Dynamical effects of missed switching in current-mode controlled DC-DC converters. IEEE Transactions on Circuits and Systems-II: Express Brief, 2004, 51(12): 649-654  
    6 Nusse H, Ott E, Yorke J. Border-collision bifurcations: an explanation for observed bifurcation phenomena. Physical Review E, 1994,49(1): 1073-1076
    7 Nordmark A. Non-periodic motion caused by grazing incidence in impact oscillators. Journal of Sound and Vibration, 1991, 145(2):279-297  
    8 di Bernardo M, Kowalczyk P, Nordmark A. Bifurcations of dynamical systems with sliding: Derivation of normal-form mappings. Physica D, 2002, 170(1): 175-205
    9 秦志英,陆启韶.非光滑分岔的映射分析.振动与冲击,2009,28(6):79-81 (Qin Zhiying, Lu Qishao. Map analysis of nonsmooth bifurcation. Vibration and Shock, 2009, 28(6): 79-81 (in Chinese))
    10 Qin ZY, Yang JC, Banerjee S, et al. Border-collision bifurcations in a generalized piecewise linear-power map. Discret
  • 加载中
计量
  • 文章访问数:  1932
  • HTML全文浏览量:  71
  • PDF下载量:  692
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-07
  • 修回日期:  2012-07-18
  • 刊出日期:  2013-01-18

目录

    /

    返回文章
    返回