EI、Scopus 收录
中文核心期刊

基于非协调边界元法和涡方法的黏性流场研究

丁静鹄, 叶继红

丁静鹄, 叶继红. 基于非协调边界元法和涡方法的黏性流场研究[J]. 力学学报, 2013, 45(2): 202-213. DOI: 10.6052/0459-1879-12-171
引用本文: 丁静鹄, 叶继红. 基于非协调边界元法和涡方法的黏性流场研究[J]. 力学学报, 2013, 45(2): 202-213. DOI: 10.6052/0459-1879-12-171
Ding Jinghu, Ye Jihong. VISCOUS FLOWFIELD BASED ON DISCONTINUOUS BOUNDARY ELEMENT METHOD AND VORTEX METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 202-213. DOI: 10.6052/0459-1879-12-171
Citation: Ding Jinghu, Ye Jihong. VISCOUS FLOWFIELD BASED ON DISCONTINUOUS BOUNDARY ELEMENT METHOD AND VORTEX METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 202-213. DOI: 10.6052/0459-1879-12-171
丁静鹄, 叶继红. 基于非协调边界元法和涡方法的黏性流场研究[J]. 力学学报, 2013, 45(2): 202-213. CSTR: 32045.14.0459-1879-12-171
引用本文: 丁静鹄, 叶继红. 基于非协调边界元法和涡方法的黏性流场研究[J]. 力学学报, 2013, 45(2): 202-213. CSTR: 32045.14.0459-1879-12-171
Ding Jinghu, Ye Jihong. VISCOUS FLOWFIELD BASED ON DISCONTINUOUS BOUNDARY ELEMENT METHOD AND VORTEX METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 202-213. CSTR: 32045.14.0459-1879-12-171
Citation: Ding Jinghu, Ye Jihong. VISCOUS FLOWFIELD BASED ON DISCONTINUOUS BOUNDARY ELEMENT METHOD AND VORTEX METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 202-213. CSTR: 32045.14.0459-1879-12-171

基于非协调边界元法和涡方法的黏性流场研究

基金项目: 国家杰出青年科学基金(51125031)和江苏省普通高校研究生科研创新计划(CXLX-0130)资助项目.
详细信息
    通讯作者:

    叶继红,教授,主要研究方向:大跨空间结构抗震、抗风及轻钢结构抗火,E-mail:yejihong@seu.edu.cn

  • 中图分类号: O357.1

VISCOUS FLOWFIELD BASED ON DISCONTINUOUS BOUNDARY ELEMENT METHOD AND VORTEX METHOD

Funds: The project was supported by the National Science fund for Distinguished Young Scholars (51125031) and Graduate Student Research and Innovation Program of Jiangsu Province (CXLX-0130).
  • 摘要: 基于非协调边界元方法和涡方法的联合应用, 模拟了二维和三维黏性不可压缩流场. 计算中利用离散涡元对漩涡的产生、凝聚和输送过程进行模拟, 并将整体计算域分解为采用涡泡模拟的内部区域和用涡列模拟的数字边界层区域. 计算域中涡量场的拉伸和对流由Lagrangian涡方法模拟, 用随机走步模拟涡量场的扩散. 内部区域涡元涡量场速度由广义Biot-Savart公式计算, 势流场速度则采用非协调边界元方法计算. 非协调边界元将所有节点均取在光滑边界处, 从而避免了法向速度的不连续现象; 而对于系数矩阵不对称的大型边界元方程组,引入了非常高效的预处理循环型广义极小残余(the generalized minimum residual, GMRES)迭代算法, 使得边界元法的优势得到了充分发挥, 同时, 在内部涡元势流场计算中对近边界点采用了正则化算法, 该算法将奇异积分转化为沿单元围道上一系列线积分, 消除了势流计算中速度及速度梯度的奇异性. 二维、三维流场算例证明了所用方法的正确性, 也验证了该算法可以大幅度提高模拟精度和效率.
    Abstract: The two-dimensional, three-dimensional viscosity and incompressible flow fields are simulated bases on a combination application of discontinuous boundary element method and vortex method in our present study. Discrete vortex elements are used to analogue the vorticity generation, accumulation and transport mechanisms of the unsteady separated flow fields. And it decomposes the computing domain into an interior domain of vortex blobs and a thin numerical boundary layer of vortex sheets. The convection and stretch of the vortical field is imitated by Lagrangian vortex method, and the random walk method is adopted to describe the diffusion process of the vortical field. Additionally, vortex element's vortical velocity is calculated by generalized Biot-Savart law, while discontinuous boundary element method is used to compute potential velocity. To avoid the discontinuous of normal velocity, all nodes of discontinuous boundary element are selected at smooth boundary. Since a large scale boundary element equation set with a nonsymmetrical coefficient matrix should be solved, the present study import a pre-conditioning the generalized minimum residual (GMRES) iterative algorithm, which takes full advantage of the boundary element method. Moreover, regularization algorithm that applies at interior points close to the boundary, which the nearly singular surface integrals are transformed into a series of line integrals along the contour of the element, help to eliminate the unacceptable results of potential velocity and velocity gradient in potential calculation. The accuracy of present method is verified in both examples of two-dimension and three-dimension flow field calculation, as well as the significant increased simulation precision and efficiency.
  • Chorin AJ. Numerical study of slightly viscous flow. J Fluid Mech, 1973, 57(4): 785-796
    Chorin AJ. Vortex sheet approximation of boundary layers. J comput Phys, 1978, 27(3): 428-432
    Nakanishi Y, Kamemoto K. Numerical simulation of flow around a sphere with vortex blobs. J wind Eng Ind Aero, 1992, 46-47(1): 363-381
    Turkiyyah G, Reed G, Yang JY. Fast vortex methods for predicting wind-Induced pressures on buildings. J Wind Eng Ind Aerodyn, 1995, 58(1-2): 51-79
    Gharakhani A, Ghoniem AF. Three-dimensional vortex simulation of time dependent incompressible internal viscous flows. J Comput Phys, 1997, 134(1): 75-95
    Zhao LJ, Tsukamoto H. Hybrid vortex method for high Reynolds number flows around three-dimensional complex boundary. Comput Fluids, 2007, 36(7): 1213-1223
    Xu W, Ye JH, Shan J. The application of BEM in the membrane structures interaction with simplified wind. Structural Engineering and Mechanics, 2009, 31(3): 349-365
    Li Y, Ye JH. The interaction between membrane structure and wind based on the discontinuous boundary element. Sci China Ser E-Tech Sci, 2010, 53(2): 486-501
    Jun L, Beer G, Meek JL. Efficient evaluation of integrals of order l/r, l/r2, l/r3 using Gauss quadrature. Engineering Analysis, 1985, 2(3): 118-123
    Milinzaao F, Saffman PG. The calculation of large Reynolds number fluid flow suing discrete vortices with random walk. J Comput Phys, 1977, 23(4): 380-392
    Roberts SG. Accuracy of the random vortex method for a problem with non-smooth initial conditions. J Comput Phys, 1985, 58(1): 29-43
    Nagarajan A, Mukherjee S. A mapping method for numerical evaluation of two-dimensional integrals with l/r singularity. Computational Mechanics, 1993, 12(1-2): 19-26
    Phongtinnaboot W, Rungamornrat J, Chintanapakdee C. Modeling of cracks in 3D piezoelectric finite media by weakly singular SGBEM. Engineering Analysis with Boundary Elements, 2011, 35(3): 319-329
    Maatouk K. Estimating quadrature errors for an efficient method for quasi-singular boundary integral. Applied Mathematics and Computation, 2012, 218(9): 4658-4670
    牛忠荣, 王秀喜, 周焕林. 三维边界元法中几乎奇异积分的正则化算法. 力学学报, 2004, 36(1): 49-56 (Niu Zhongrong, Wang Xiuxi, Zhou Huanlin. A regularization algorithm for the nearly singular integrals in 3-D BEM. Acta Mechanica Sinica, 2004, 36: 49-56 (in Chinese))
    周焕林, 牛忠荣, 王秀喜. 三维位势问题边界元法中几乎奇异积分的正则化. 计算物理, 2005, 22(6): 501-506 (Zhou Huanlin, Niu Zhongrong, Wang Xiuxi. Regularization of nearly singular integrals in the boundary element method for 3-D potential problems. Chinese Journal of Computational Physics, 2005, 22(6): 501-506 (in Chinese))
    周焕林, 王秀喜, 牛忠荣. 位势问题边界元方法中几乎奇异积分的完全解析算法. 中国科学技术大学学报, 2003, 33(4): 431-437 (Zhou Huanlin, Wang Xiuxi, Niu Zhongrong. Completely analytical algorithm of nearly singular integrals in the boundary element method of potential problems. Journal of University of Science and Technology of China, 2003, 33(4): 431-437 (in Chinese))
    Levitan ML, Mehta KC, Vann WP. Field measurements of pressures on the Texas Tech Building. J Wind Eng Ind Aerodyn, 1991, 38(2-3): 227-234
    Levitan ML, Mehta KC. Texas tech field experiments for wind loads, Part II: meteorological instrumentation and terrain parameters. J Wind Eng Ind Aerodyn, 1992, 41-44(1-3): 1577-1588
    Fishelov D. Vortex methods for slightly viscous three-dimensional flow. SIAM J Sci Stat Comput, 1990, 11(3): 399-424
    Rouse H. Advanced Mechanics of Fluids. New York: John Wiley&Sons Inc, 1965. 120-126
计量
  • 文章访问数:  1986
  • HTML全文浏览量:  89
  • PDF下载量:  871
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-03
  • 修回日期:  2012-12-03
  • 刊出日期:  2013-03-17

目录

    /

    返回文章
    返回