EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种孔隙介质力学模型及在水泥基材料的应用

阚晋 王建祥

阚晋, 王建祥. 一种孔隙介质力学模型及在水泥基材料的应用[J]. 力学学报, 2012, 44(6): 1066-1070. doi: 10.6052/0459-1879-12-053
引用本文: 阚晋, 王建祥. 一种孔隙介质力学模型及在水泥基材料的应用[J]. 力学学报, 2012, 44(6): 1066-1070. doi: 10.6052/0459-1879-12-053
Kan Jin, Wang Jianxiang. A MECHANICAL MODEL OF POROUS MEDIA AND ITS APPLICATION IN CEMENT MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1066-1070. doi: 10.6052/0459-1879-12-053
Citation: Kan Jin, Wang Jianxiang. A MECHANICAL MODEL OF POROUS MEDIA AND ITS APPLICATION IN CEMENT MATERIALS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1066-1070. doi: 10.6052/0459-1879-12-053

一种孔隙介质力学模型及在水泥基材料的应用

doi: 10.6052/0459-1879-12-053
基金项目: 国家自然科学基金资助项目(10932001, 11102002).
详细信息
    通讯作者:

    阚晋

  • 中图分类号: O34

A MECHANICAL MODEL OF POROUS MEDIA AND ITS APPLICATION IN CEMENT MATERIALS

Funds: The project was supported by the National Natural Science Foundation of China (10932001, 11102002).
  • 摘要: 基于细观力学和断裂力学的基本理论提出一个新的分析模型, 对孔隙介质的力学性能进行了分析. 依据孔隙介质内部孔隙的几何描述和状态参数,如孔隙率、形状、尺度及分布等,通过等效夹杂理论获得孔隙介质的等效本构方程,其最终变量为应力、应变和孔隙的形态参数. 根据断裂理论中材料承受载荷作用下破坏增长过程中的能量守恒,对孔隙介质变形过程中机械能、弹性应变能和载荷提供的势能进行分析, 根据能量守恒定律建立能量守恒方程,其最终变量也为应力、应变和孔隙的形态参数. 根据等效本构方程和能量守恒方程,获得孔隙介质承受载荷作用下的应力应变关系. 最后将该力学模型应用于水泥基材料,计算水泥基材料的力学性能并与文献中的结果进行对比分析,结果显示模型的计算结果准确有效.

     

  • Mehta PK, Monteiro PJ. Concrete Microstructure, Properties and Materials. New York: MeGraw Hill, 2005  
    Khalili N, Khabbaz M H, Valliappan S. An effective stress based numerical model for hydro-mechanical analysis in unsaturated porous media. Computational Mechanics, 2000, 26:174-184  
    Rice RW. Limitations of pore-stress concentrations on the mechanical properties of porous materials. Journal of Materials Science, 1997, 32: 4731-4736  
    Sevostianov I, Kushch V. Effect of pore distribution on the statistics of peak stress and overall properties of porous material. International Journal of Solids and Structures, 2009, 46: 4419-4429  
    Nielsen LF. On strength of porous material: Simple systems and densified systems. Materials and Structures, 1998, 31: 651-661  
    Rubin MB, Vorobiev OY, Glenn LA. Mechanical and numerical modeling of a porous elastic-viscoplastic material with tensile failure. International Journal of Solids and Structures, 2000, 37: 1841-1871  
    Bruck HA, Gilat R, Aboudi J, et al. A new approach for optimizing the mechanical behavior of porous microstructures for porous materials by design. Modeling and Simulation in Materials Science and Engineering, 2007, 15: 653-674  
    Wang MR, Pan N. Elastic property of multiphase composites with random microstructures. Journal of Computational Physics, 2009, 228: 5978-5988  
    Wang MR, Wang JK, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 2007, 75: 036702  
    Poutet J, Manzoni D, Chehade FH, et al. The effective mechanical properties of random porous media. Journal of the Mechanics and Physics of Solids, 1996, 44(10): 1587-1620  
    梁军,杜善义,韩杰才等. 含夹杂和微裂纹复合材料的损伤演化和分析. 固体力学学报,1996, 17(4): 296-302 (Liang Jun, Du Shanyi, Han Jiecai, et al. Damage evolution and analysis of compsites with inclusions and matrix microcracks. Acta Mechanica Solida Sinica, 1996, 17(4): 296-302 (in Chinese))
    Ulm FJ, Constantinides G, Heukamp FH. Is concrete a poromechanics material? -- A multiscale investigation of poroelastic properties. Materials and Structures/ Concrete Science and Engineering, 2004, 37: 43-58
    李响, 阎培渝. 粉煤灰参量对水泥孔溶液碱度与微观结构的影响. 建筑材料学报, 2010, 13(6): 787-791 (Li Xiang, Yan Peiyu. Influnece of fly ash content on alkalinity of pore solution and microstructure of cement pastes. Journal of Building Materials, 2010, 13(6): 787-791 (in Chinese))
    何真, 张丽君. 水泥浆体的微结构及其与强度的关系. 水泥工程, 2004, 2: 33-36 (He Zhen, Zhang Lijun. The relationship between microstructure and strength of hardened cement paste. Cement Engineering, 2004, 2: 33-36 (in Chinese))
    陈建康, 宋慧. 混凝土材料损伤耦合的非线性黏弹性本构关系. 应用力学学报, 2011, 28(4): 4-7-412 (Cheng Jiankang, Song Hui. Damage coupled nonlinear viscoelastic constitutive model of concretes. Chinese Journal of Applied Mechanics, 2011, 28(4): 4-7-412 (in Chinese))
    Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London Series A--Mathematical and Physical Sciences. 1957, 241(1226): 376-396
    杜善义, 王彪. 复合材料细观力学. 北京:科学出版社, 1998 (Du Shanyi, Wang Biao. Meso-mechanics of Composites. Beijing: Science Press, 1998 (in Chinese))
    Stora E. Multi-scale modeling and simulations of chemo-mechanical behavior of degraded cement-based materials. [PhD Thesis]. Paris: University of Paris-Est, 2007  
  • 加载中
计量
  • 文章访问数:  1928
  • HTML全文浏览量:  95
  • PDF下载量:  1014
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-01
  • 修回日期:  2012-05-25
  • 刊出日期:  2012-11-18

目录

    /

    返回文章
    返回