EI、Scopus 收录


尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!



姜潮 张哲 韩旭 白影春

姜潮, 张哲, 韩旭, 白影春. 一种基于证据理论的结构可靠性分析方法[J]. 力学学报, 2013, 45(1): 103-115. doi: 10.6052/0459-1879-12-040
引用本文: 姜潮, 张哲, 韩旭, 白影春. 一种基于证据理论的结构可靠性分析方法[J]. 力学学报, 2013, 45(1): 103-115. doi: 10.6052/0459-1879-12-040
Jiang Chao, Zhang Zhe, Han Xu, Bai Yingchun. AN EVIDENCE-THEORY-BASED RELIABILITY ANALYSIS METHOD FOR UNCERTAIN STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 103-115. doi: 10.6052/0459-1879-12-040
Citation: Jiang Chao, Zhang Zhe, Han Xu, Bai Yingchun. AN EVIDENCE-THEORY-BASED RELIABILITY ANALYSIS METHOD FOR UNCERTAIN STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 103-115. doi: 10.6052/0459-1879-12-040


doi: 10.6052/0459-1879-12-040
基金项目: 国家自然科学基金(11172096); 国家重点基础研究发展计划(2010CB832700); 教育部新世纪优秀人才支持计划(NCET-11-0124) 和霍英东教育基金会高等院校青年教师基金(131005) 资助项目.


  • 中图分类号: TB114.3


Funds: The project was supported by the National Natural Science Foundation of China (11172096), the National Basic Research Program (2010CB832705), the Program for New Century Excellent Talents in University (NCET-11-0124) and Fok Ying-Tong Education Foundation for Young Teachers in the higher Education Institutions of China (131005).
  • 摘要: 提出了一种基于证据理论的结构可靠性高效求解方法. 通过构造优化问题求解极限状态方程的非概率可靠性指标及设计验算点, 并构造一辅助区域. 通过辅助区域显著减少需要进行极值分析的焦元个数, 并基于区间分析方法减少焦元上极限状态方程的计算次数, 从而有效降低计算成本. 数值算例及工程应用验证了该方法的有效性.


  • 1 Guo J, Du XP. Sensitivity analysis with mixture of epistemic and aleatory uncertainties. AIAA J, 2007, 45(9): 2337-2349  
    2 Hoffman FO, Hammonds JS. Propagation of uncertainty in risk assessment: The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal, 1994,14(5): 707-712  
    3 Hasofer AM, Lind NC. Exact and invariant second-moment code format. ASME J Eng Mech Div, 1974, 100: 111-121
    4 Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Comput Struct, 1978, 9(5): 489-494  
    5 Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety. ASME J Eng Mech Div, 1981, 107(6): 1227-1238
    6 Breitung KW. Asymptotic approximation for multinormal integrals. ASCE J Eng Mech, 1984, 110(3): 357-366  
    7 Shafer G. A Mathematical Theory of Evidence. NJ: Princeton, 1976
    8 Klir GJ, Yuan B. Fuzzy Sets, Uncertainty and Information. Englewood Cliffs, NJ: Prentice-Hall, 1998
    9 Yager RR, Kacprzyk J, Fedrizzi M. Advances in the Dempster- Shafer Theory of Evidence. New York: John Wiley & Sons, 1994
    10 Oberkampf WL, Helton JC. Mathematical representation of uncertainty. AIAA2001-1645, 2001
    11 Sentz K, Ferson S. Combination of evidence in Dempster-Shafer theory. SAND2002-0835 Report, Sandia National Laboratories,2002
    12 Klir GJ, Wierman MJ. Uncertainty-based Information-Elements of Generalized Information Theory. Heidelberg: Physica-Verlag, 1999
    13 Klir GJ. Generalized information theory: Aims, results, and open problems. Reliab Eng Syst Safe, 2004, 85(1-3): 21-38  
    14 Zadeh L. Fuzzy sets. Inf Control, 1965, 8: 338-353  
    15 Benhaim Y, Elishakoff I. Convex models of uncertainties in applied mechanics. Amsterdam: Elsevier Science Publisher, 1990
    16 Elishakoff I, Elisseeff P, Glegg SAL. Non-probabilistic convextheoretic modeling of scatter in material properties. AIAA J, 1994,32: 843-849  
    17 Qiu ZP, Yang D, Elishakoff I. Probabilistic interval reliability of structural systems. Int J Solids Struct, 2008, 45: 2850-2860  
    18 Qiu ZP. Convex Method Based On Non-Probabilistic Set-Theory and its Application. Beijing: National Defence Industry Press, 2005
    19 Jiang C, Han X, Lu GY, et al. Correlation analysis of nonprobabilistic convex model and corresponding structural reliability technique. Comput Method Appl M, 2001, 200(33-36): 2528-2546
    20 Luo YJ, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model. Comput Struct, 2009,87(21-22): 1408-1415
    21 Guo X, Bai W, Zhang WS, et al. Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Method in Appl M, 2009, 198: 3378-3399  
    22 Tonon F, Bernardini A, Mammino A. Determination of parameters range in rock engineering by means of random set theory. Reliab Eng Syst Safe, 2000, 70: 241-261  
    23 Oberkampf WL, Helton JC. Investigation of evidence theory for engineering applications. AIAA2002-1569, 2002
    24 Agarwal H, Renaud JE, Preston EL, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Safe, 2004, 85: 281-294  
    25 Bae HR, Grandhi RV, Canfield RA. An approximation approach for uncertainty quantification using evidence theory. Reliab Eng Syst Safe, 2004, 86: 215-225  
    26 Bae HR, Grandhi RV, Canfield RA. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Comput Struct, 2004, 82: 1101-1112  
    27 Mourelatos Z, Zhou J. A design optimization method using evidence theory. ASME J Mech Des, 2006, 128: 901-908  
    28 Du XP. Uncertainty analysis with probability and evidence theories. In: Proceedings of DETC/CIE 2006, ASME 2006 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, September 10-13, Philadelphia, Pennsylvania, USA, 2006
    29 郭书祥,吕震宙,冯元生. 基于区间分析的结构非概率可靠性模 型. 计算力学学报,2001,18(1): 56-60 (Guo Shuxiang, Lu Zhenzhou, Feng Yuansheng, A non-probabilistic model of structural reliability based on interval analysis. Journal of Computational Mechanics,2001, 18(1): 56-60 (in Chinese))
    30 曹鸿钧,段宝岩. 基于凸集合模型的非概率可靠性研究. 计算力 学学报,2005,22(5): 546-549 (Cao Hongjun, Duan Baoyan. An approach on the non-probabilistic reliability of structures based on uncertainty convex models. Journal of Computational Mechanics,2005, 22(5): 546-549 (in Chinese))
    31 Jiang T, Chen JJ. A semi-analytic method for calculating nonprobabilistic reliability index based on interval models. Appl Math Model, 2007, 56: 1362-1370
    32 Chen XY, Tang CY, Tsui CP, et al. Modified scheme based on semianalytic approach for computing non-probabilistic reliability index. Acta Mech Solida Sin, 2010, 23(2): 115-123
    33 Kang Z, Luo YJ. Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Engrg, 2009, 198: 3228-3238  
    34 Luo YJ, Kang Z, Luo Z, et al. Continuum topology optimization with non-probabilistic reliability constraints based on multiellipsoid convex model. Struct Multidisc Optim, 2008, 39 (3): 297-310
    35 Kang Z, Luo YJ. Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidisc Optim, 2010, 42: 89-102  
    36 Nocedal J, Wright SJ. Numerical Optimization. New York: Springer, 1999
    37 张学荣,苏清祖. 侧面碰撞成员损伤影响因素分析. 汽车工程,2008, 3(2): 146-150 (Zhang Xuerong, Su Qingzu. A research on influencing factors of occupant injury inside impact. Auto Eng, 2008,30(2): 146-150 (in Chinese))
  • 加载中
  • 文章访问数:  2293
  • HTML全文浏览量:  54
  • PDF下载量:  1289
  • 被引次数: 0
  • 收稿日期:  2012-02-16
  • 修回日期:  2012-06-06
  • 刊出日期:  2013-01-18