1 Guo J, Du XP. Sensitivity analysis with mixture of epistemic and aleatory uncertainties. AIAA J, 2007, 45(9): 2337-2349
|
2 Hoffman FO, Hammonds JS. Propagation of uncertainty in risk assessment: The need to distinguish between uncertainty due to lack of knowledge and uncertainty due to variability. Risk Anal, 1994,14(5): 707-712
|
3 Hasofer AM, Lind NC. Exact and invariant second-moment code format. ASME J Eng Mech Div, 1974, 100: 111-121
|
4 Rackwitz R, Fiessler B. Structural reliability under combined random load sequences. Comput Struct, 1978, 9(5): 489-494
|
5 Hohenbichler M, Rackwitz R. Non-normal dependent vectors in structural safety. ASME J Eng Mech Div, 1981, 107(6): 1227-1238
|
6 Breitung KW. Asymptotic approximation for multinormal integrals. ASCE J Eng Mech, 1984, 110(3): 357-366
|
7 Shafer G. A Mathematical Theory of Evidence. NJ: Princeton, 1976
|
8 Klir GJ, Yuan B. Fuzzy Sets, Uncertainty and Information. Englewood Cliffs, NJ: Prentice-Hall, 1998
|
9 Yager RR, Kacprzyk J, Fedrizzi M. Advances in the Dempster- Shafer Theory of Evidence. New York: John Wiley & Sons, 1994
|
10 Oberkampf WL, Helton JC. Mathematical representation of uncertainty. AIAA2001-1645, 2001
|
11 Sentz K, Ferson S. Combination of evidence in Dempster-Shafer theory. SAND2002-0835 Report, Sandia National Laboratories,2002
|
12 Klir GJ, Wierman MJ. Uncertainty-based Information-Elements of Generalized Information Theory. Heidelberg: Physica-Verlag, 1999
|
13 Klir GJ. Generalized information theory: Aims, results, and open problems. Reliab Eng Syst Safe, 2004, 85(1-3): 21-38
|
14 Zadeh L. Fuzzy sets. Inf Control, 1965, 8: 338-353
|
15 Benhaim Y, Elishakoff I. Convex models of uncertainties in applied mechanics. Amsterdam: Elsevier Science Publisher, 1990
|
16 Elishakoff I, Elisseeff P, Glegg SAL. Non-probabilistic convextheoretic modeling of scatter in material properties. AIAA J, 1994,32: 843-849
|
17 Qiu ZP, Yang D, Elishakoff I. Probabilistic interval reliability of structural systems. Int J Solids Struct, 2008, 45: 2850-2860
|
18 Qiu ZP. Convex Method Based On Non-Probabilistic Set-Theory and its Application. Beijing: National Defence Industry Press, 2005
|
19 Jiang C, Han X, Lu GY, et al. Correlation analysis of nonprobabilistic convex model and corresponding structural reliability technique. Comput Method Appl M, 2001, 200(33-36): 2528-2546
|
20 Luo YJ, Kang Z, Li A. Structural reliability assessment based on probability and convex set mixed model. Comput Struct, 2009,87(21-22): 1408-1415
|
21 Guo X, Bai W, Zhang WS, et al. Confidence structural robust design and optimization under stiffness and load uncertainties. Comput Method in Appl M, 2009, 198: 3378-3399
|
22 Tonon F, Bernardini A, Mammino A. Determination of parameters range in rock engineering by means of random set theory. Reliab Eng Syst Safe, 2000, 70: 241-261
|
23 Oberkampf WL, Helton JC. Investigation of evidence theory for engineering applications. AIAA2002-1569, 2002
|
24 Agarwal H, Renaud JE, Preston EL, et al. Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab Eng Syst Safe, 2004, 85: 281-294
|
25 Bae HR, Grandhi RV, Canfield RA. An approximation approach for uncertainty quantification using evidence theory. Reliab Eng Syst Safe, 2004, 86: 215-225
|
26 Bae HR, Grandhi RV, Canfield RA. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Comput Struct, 2004, 82: 1101-1112
|
27 Mourelatos Z, Zhou J. A design optimization method using evidence theory. ASME J Mech Des, 2006, 128: 901-908
|
28 Du XP. Uncertainty analysis with probability and evidence theories. In: Proceedings of DETC/CIE 2006, ASME 2006 International Design Engineering Technical Conference & Computers and Information in Engineering Conference, September 10-13, Philadelphia, Pennsylvania, USA, 2006
|
29 郭书祥,吕震宙,冯元生. 基于区间分析的结构非概率可靠性模 型. 计算力学学报,2001,18(1): 56-60 (Guo Shuxiang, Lu Zhenzhou, Feng Yuansheng, A non-probabilistic model of structural reliability based on interval analysis. Journal of Computational Mechanics,2001, 18(1): 56-60 (in Chinese))
|
30 曹鸿钧,段宝岩. 基于凸集合模型的非概率可靠性研究. 计算力 学学报,2005,22(5): 546-549 (Cao Hongjun, Duan Baoyan. An approach on the non-probabilistic reliability of structures based on uncertainty convex models. Journal of Computational Mechanics,2005, 22(5): 546-549 (in Chinese))
|
31 Jiang T, Chen JJ. A semi-analytic method for calculating nonprobabilistic reliability index based on interval models. Appl Math Model, 2007, 56: 1362-1370
|
32 Chen XY, Tang CY, Tsui CP, et al. Modified scheme based on semianalytic approach for computing non-probabilistic reliability index. Acta Mech Solida Sin, 2010, 23(2): 115-123
|
33 Kang Z, Luo YJ. Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Engrg, 2009, 198: 3228-3238
|
34 Luo YJ, Kang Z, Luo Z, et al. Continuum topology optimization with non-probabilistic reliability constraints based on multiellipsoid convex model. Struct Multidisc Optim, 2008, 39 (3): 297-310
|
35 Kang Z, Luo YJ. Reliability-based structural optimization with probability and convex set hybrid models. Struct Multidisc Optim, 2010, 42: 89-102
|
36 Nocedal J, Wright SJ. Numerical Optimization. New York: Springer, 1999
|
37 张学荣,苏清祖. 侧面碰撞成员损伤影响因素分析. 汽车工程,2008, 3(2): 146-150 (Zhang Xuerong, Su Qingzu. A research on influencing factors of occupant injury inside impact. Auto Eng, 2008,30(2): 146-150 (in Chinese))
|