EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

与结构动特性协同的自适应Newmark方法

邢誉峰 郭静

邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44(5): 904-911. doi: 10.6052/0459-1879-12-033
引用本文: 邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44(5): 904-911. doi: 10.6052/0459-1879-12-033
Xing Yufeng, Guo Jing. A SELF-ADAPTIVE NEWMARK METHOD WITH PARAMETERS DEPENDENT UPON STRUCTURAL DYNAMIC CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 904-911. doi: 10.6052/0459-1879-12-033
Citation: Xing Yufeng, Guo Jing. A SELF-ADAPTIVE NEWMARK METHOD WITH PARAMETERS DEPENDENT UPON STRUCTURAL DYNAMIC CHARACTERISTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 904-911. doi: 10.6052/0459-1879-12-033

与结构动特性协同的自适应Newmark方法

doi: 10.6052/0459-1879-12-033
基金项目: 国家自然科学基金项目(11172028,10772014)和国防973项目(613133)资助.
详细信息
    通讯作者:

    邢誉峰

  • 中图分类号: O34

A SELF-ADAPTIVE NEWMARK METHOD WITH PARAMETERS DEPENDENT UPON STRUCTURAL DYNAMIC CHARACTERISTICS

Funds: The project was supported by the National Natural Science Foundation of China (11172028,10772014) and the National Defense Program (973 program) (613133).
  • 摘要: 提出了一种与结构动特性协同的自适应Newmark方法,其参数可基于数值弥散和数值耗散最小化的条件用解析方法求得.对线性单自由度动力学系统,该方法的相位误差精确为零并且谱半径为1.对线性多自由度系统和非线性系统,该方法在所有二阶积分解法中最精确.数值结果验证了新提出格式的高精度和结论.

     

  • Newmark NM.A method of computation for structural dynamics.Journal of the Engineering Mechanics Division,ASCE,1959,85:67-94
    To CWS.A stochastic version of the Newmark family of algorithms for discretized dynamic system.Computers & Structures,1992,44(3):667-673  
    Bernard P,Fleury G.Stochastic Newmark scheme.Probabilistic Engineering Mechanics,2002,17:45-61  
    Zhang L,Zu JW,Zheng Z.The stochastic Newmark algorithm for random analysis of multi-degree-of-freedom nonlinear systems.Computers & Structures,1999,70:557-568  
    缪炳祺,胡夏夏,许礼深.结构非平稳随机响应分析的Newmark递推算法.强度与环境,1996,(1):34-39 (Miao Bingqi,Hu Xiaxia,Xu Lishen.Recursive Newmark algorithm for the analysis of nonstationary random structural response. Structure & Environment Engineering,1996,(1):34-39 (in Chinese))
    Simo JC,Quoc LV.On the dynamics in space of rods undergoing large motions—A geometrically exact approach.Computer Methods in Applied Mechanics and Engineering,1988,66:125-161  
    Ibrahimbegovic A.On the choice of finite rotation parameters.Computer Methods in Applied Mechanics and Engineering,1997,149:49-71  
    Deuflhard P,Krause R,Ertel S.A contact-stabilized Newmark method for dynamical contact problems. International Journal for Numerical Methods in Engineering,2007,73(9):1274-1290
    Kane C,Repetto EA,Ortiz M,et al.Finite element analysis of nonsmooth contact.Computer Methods in Applied Mechanics and Engineering,1999,180:1-26  
    Hughes TJR.Stability,convergence and growth and decay of the average acceleration method in non-linear structural dynamics.Computers & Structures,1976,6:313-324  
    Kane C,Marsden JE,Ortiz M,et al.Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems.International Journal for Numerical Methods in Engineering,2000,49:1295-1325  3.0.CO;2-W">
    Zampieri E,Pavarino LF.Approximation of acoustic waves by explicit Newmark's schemes and spectral element methods.Journal of Computational and Applied Mathematics,2006,185:308-325  
    Lee JF,Sacks Z.Whitney elements time domain methods.IEEE Transactions on Magnetics,1995,31(3):1325-1329  
    Gedney SD,Navsariwala U.An unconditionally stable finite element time-domain solution of the vector wave equation.IEEE Microwave and Guided Wave Letters,1995,5(10):332-334  
    Fung TC.Unconditionally stable higher-order Newmark methods by sub-stepping procedure.Computer Methods in Applied Mechanics and Engineering,1997,147:61-84  
    Sheng G,Liu B.Generalized high-order accurate Newmark method for head-disk interface dynamics in magnetic recording technology.Finite Elements in Analysis and Design,1998,29:87-103  
    Chang SY.A technique for overcoming load discontinuity in using Newmark method.Journal of Sound and Vibration,2007,304:556-569  
    Deü JF,Matignon D.Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme.Computers and Mathematics with Application,2010,59:1745-1753  
    Belytschko T,Mullen R.Stability of explicit-implicit mesh partitions in time integration.International Journal for Numerical Methods in Engineering,1978,12(10):1575-1586  
    Daniel WJT.The subcycled Newmark algorithm.Computational Mechanics,1997,20:272-281  
    Soares JD,Mansur WJ.A time domain FEM approach based on implicit Green's functions for nonlinear dynamic analysis.International Journal for Numerical Methods in Engineering,2005,62:664-681  
    Kim BO,Lee AS.A transient response analysis in the state-space applying the average velocity concept.Journal of Sound and Vibration,2005,281:1023-1035  
    Guo ZY,Li QN,Zhang SJ.Direct Newmark-precision integration method of seismic analysis for short-leg shear wall structure.In:Proceedings of the Ninth International Symposium on Structural Engineering for Young Experts,Beijing:Science Press,2006,1:180-184
    Hilber HM,Hughes TJR,Taylor RL.Improved numerical dissipation for time integration algorithms in structural dynamics.Earthquake Engineering and Structural Dynamics,1977,5:283-292  
    Wood WL,Bossak M,Zienkiewicz OC.An alpha modification of Newmark's method.International Journal for Numerical Methods in Engineering,1980,15:1562-1566  
    Chung J,Hulbert GM.A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-α method.Journal of Applied Mechanics,Transactions of the ASME,1993,60:371-375  
    Kuhl D,Crisfield MA.Energy-conserving and decaying algorithms in non-linear structural dynamics.International Journal for Numerical Methods in Engineering,1999,45:569-599  3.0.CO;2-A">
    Krenk F,Hogsberg JR.Properties of time integration with first order filter damping.International Journal for Numerical Methods in Engineering,2005,64:547-566  
    Krenk S.Energy conservation in Newmark based time integration algorithms.Computer Methods in Applied Mechanics and Engineering,2006,195:6110-6124  
    Zienkiewicz OC.A new look at the Newmark,Houbolt and other time stepping formulas.A weighted residual approach.Earthquake Engineering and Structural Dynamics,1977,5:413-418  
    Katona MG,Zienkiewicz OC.A unified set of single step algorithms Part 3:The beta-m method,a generalization of the Newmark scheme.International Journal for Numerical Methods in Engineering,1985,21:1345-1359  
    Wood WL.A further look at Newmark,Houbolt,etc.,time-stepping formulae.International Journal for Numerical Methods in Engineering,1984,20:1009-1017  
    杨蓉,邢誉峰.动力学平衡方程的辛两步求解算法.计算力学学报,2008,25(6):882-886 (Yang Rong,Xing Yufeng.Symplectic two-step algorithms of FE dynamic equations.Chinese Journal of Computational Mechanics,2008,25(6):882-886 (in Chinese))
    邢誉峰,杨蓉.动力学平衡方程的Euler中点辛差分求解格式.力学学报,2007,39(1):100-105 (Xing Yufeng,Yang Rong.Application of Euler midpoint symplectic integration method for the solution of dynamic equilibrium equations. Chinese Journal of Theoretical and Applied Mechanics,2007,39(1):100-105 (in Chinese))
    Hilber HM,Hughes TJR.Collocation,dissipation and 'overshoot' for time integration schemes in structural dynamics.Earthquake Engineering and Structural Dynamics,1978,6:99-117  
    邢誉峰,冯伟.李级数算法和显式辛算法的相位分析.计算力学学报,2009,26(2):167-171 (Xing Yufeng,Feng Wei.Phase analysis of Lie series algorithm and explicit symplectic algorithm.Chinese Journal of Computational Mechanics,2009,26(2):167-171 (in Chinese))
    Fox L,Goodwin ET.Some new methods for the numerical integration of ordinary differential equations.In:Proceedings of Cambridge Philosophical Society,1949,45:373-388  
    Wilson EL,Farhoomand I,Bathe KJ.Nonlinear dynamic analysis of complex structures.Earthquake Engineering and Structural Dynamics,1973,1:241-252
  • 加载中
计量
  • 文章访问数:  1403
  • HTML全文浏览量:  72
  • PDF下载量:  1439
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-02-06
  • 修回日期:  2012-04-11
  • 刊出日期:  2012-09-18

目录

    /

    返回文章
    返回