EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多体动力学超定运动方程广义-α求解新算法

马秀腾 翟彦博 罗书强

马秀腾, 翟彦博, 罗书强. 多体动力学超定运动方程广义-α求解新算法[J]. 力学学报, 2012, 44(5): 948-952. doi: 10.6052/0459-1879-12-028
引用本文: 马秀腾, 翟彦博, 罗书强. 多体动力学超定运动方程广义-α求解新算法[J]. 力学学报, 2012, 44(5): 948-952. doi: 10.6052/0459-1879-12-028
Ma Xiuteng, Zhai Yanbo, Luo Shuqiang. NEW GENERALIZED-α METHOD FOR OVER-DETERMINED MOTION EQUATIONS IN MULTIBODY DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 948-952. doi: 10.6052/0459-1879-12-028
Citation: Ma Xiuteng, Zhai Yanbo, Luo Shuqiang. NEW GENERALIZED-α METHOD FOR OVER-DETERMINED MOTION EQUATIONS IN MULTIBODY DYNAMICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 948-952. doi: 10.6052/0459-1879-12-028

多体动力学超定运动方程广义-α求解新算法

doi: 10.6052/0459-1879-12-028
基金项目: 中央高校基本科研业务费专项资金(XDJK2009C009)和西南大学博士基金(SWU109048)资助项目.
详细信息
    通讯作者:

    马秀腾

  • 中图分类号: O313.7

NEW GENERALIZED-α METHOD FOR OVER-DETERMINED MOTION EQUATIONS IN MULTIBODY DYNAMICS

Funds: The project was supported by the Fundamental Research Funds for the Central Universities (XDJK2009C009) and Funds for Doctors of Southwest University(SWU109048).
  • 摘要: 完整约束多体系统第一类Lagrange方程建模得到的运动方程是指标-3形式的微分-代数方程(differental-algebraic equations,DAEs).如果同时考虑速度约束,将得到超定运动方程,该方程是指标-2的超定微分-代数方程(over-determined differential-algebraic equations,ODAEs).基于结构动力学中常用的广义-α方法,将其拓展,求解包含速度约束的超定运动方程,相对于其他求解指标-2 ODAEs的算法,新的算法没有增加离散得到的非线性方程组方程的数目.通过数值实验验证算法,并说明其求解ODAEs不存在精度降阶的现象,仍然具有二阶精度,同时算法的数值耗散也是可以控制的.最后新方法与其他求解多体系统ODAEs形式运动方程算法的CPU时间进行了比较分析.

     

  • 彭慧莲,郭易圆,王琪.用第一类Lagrange方程求解平面多体系统约束力的方法.工程力学.2008,25(12):65-71 (Peng Huilian,Guo Yiyuan,Wang Qi.A method for solving constrained force of planar multi-body system via the first kind of Lagrange's equations.Engineering Mechanics,2008,25(12):65-71 (in Chinese))
    Petzold LR.Differential/algebraic equations are not ODE's.SIAM Journal of Scientific and Statistical Computing,1982,3(2):367-384
    Jay LO,Negrut D.Extensions of the HHT-α method to differential-algebraic equations in mechanics. ETNA,2007,26(1):190-208
    王琪,陆启韶.多体系统Lagrange方程数值算法的研究进展.力学进展,2001,31(1):9-17 (Wang Qi,Lu Qi Shao.Advances in the numerical methods for Lagrange's equations of multibody systems.Advances in Mechanics,2001,31(1):9-17 (in Chinese))
    潘振宽,赵维加,洪嘉振等.多体系统动力学微分/代数方程组数值方法.力学进展.1996,26(1):28-40 (Pan Zhenkuan,Zhao Weijia,Hong Jiazhen,et al.On numerical algorithms for differential/algebraic equations of motion of multibody systems.Advances in Mechanics,1996,26 (1):28-40 (in Chinese))
    Bauchau OA,Laulusa A.Review of contemporary approaches for constraint enforcement in multibody systems. ASME Journal of Computational and Nonlinear Dynamics,2008,3(1):11005  
    Negrut D,Jay LO,Khude N.A discussion of low order numerical integration formulas for rigid and flexible multibody dynamics.ASME Journal of Computational and Nonlinear Dynamics,2009,4(2):21008  
    戎保,芮筱亭,王国平等.多体系统动力学研究进展.振动与冲击,2011,30(7):178-187 (Rong Bao,Rui Xiaoting,Wang Guoping,et al.Developments of studies on multibody system dynamics.Journal of Vibration and Shock,2011,30(7):178-187 (in Chinese))
    Cardona A,Géradin M.Numerical integration of second order differential-algebraic systems in flexible mechanism dynamics.In:Seabra Pereira MFO,Ambrósio JAC,ed.Computer-Aided Analysis of Rigid and Flexible Mechanical Systems.Dordrecht:Kluwer Academic Publishers,1994.501-529
    Lunk C,Simeon B.Solving constrained mechanical systems by the family of Newmark and α-methods. ZAMM,2006,86(10):772-784  
    Jay LO,Negrut D.A second order extension of the generalized-α method for constrained systems in mechanics.In:Bottasso CL,ed.Multibody Dynamics:Computational Methods and Applications.Berlin Heidelberg:Springer-Verlag,2008.143-158
    马秀腾,翟彦博,罗书强.基于θ 1方法的多体动力学数值算法研究.力学学报.2011,43(5):931-938 (Ma Xiuteng,Zhai Yanbo,Luo Shuqiang.Numerical method of multibody dynamics based on θ 1 method.Chinese Journal of Theoretical and Applied Mechanics,2011,43(5):931-938 (in Chinese))
    Petzold LR,Potra FA.ODAE methods for the numerical solution of Euler-Lagrange equations.Applied Numerical Mathematics,1992,10 (5):397-413  
    Gear CW,Gupta GK,Leimkuhler B.Automatic integration of Euler-Lagrange equations with constraints. Journal of Computational and Applied Mathematics,1985,12&13:77-90
    马秀腾,翟彦博,罗书强.基于广义-α方法的多体系统运动方程数值算法研究.见:第13届中国系统仿真技术及其应用学术年会论文集,2011,13:79-83 (Ma Xiuteng,Zhai Yanbo,Luo Shuqiang.Numerical integration of multibody motion equations based on generalized-α method.In:Proceedings of 13th Chinese Conference on System Simulation Technology & Application (CCSSTA'2011),2011,13:79-83 (in Chinese))
    Chung J,Hulbert GM.A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-α method.ASME Journal of Applied Mechanics,1993,60:371-375  
    Bottasso CL,Dopico D,Trainelli L.On the optimal scaling of index three DAEs in multibody dynamics.Multibody System Dynamics,2007,19(1-2):3-20
  • 加载中
计量
  • 文章访问数:  1996
  • HTML全文浏览量:  63
  • PDF下载量:  1193
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-19
  • 修回日期:  2012-02-21
  • 刊出日期:  2012-09-18

目录

    /

    返回文章
    返回