EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可压缩各向同性衰减湍流直接数值模拟研究

李虎 张树海

李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究[J]. 力学学报, 2012, (4): 673-686. doi: 10.6052/0459-1879-11-353
引用本文: 李虎, 张树海. 可压缩各向同性衰减湍流直接数值模拟研究[J]. 力学学报, 2012, (4): 673-686. doi: 10.6052/0459-1879-11-353
Li Hu, Zhang Shuhai. DIRECT NUMERICAL SIMULATION OF DECAYING COMPRESSIBLE ISOTROPIC TURBULENC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 673-686. doi: 10.6052/0459-1879-11-353
Citation: Li Hu, Zhang Shuhai. DIRECT NUMERICAL SIMULATION OF DECAYING COMPRESSIBLE ISOTROPIC TURBULENC[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 673-686. doi: 10.6052/0459-1879-11-353

可压缩各向同性衰减湍流直接数值模拟研究

doi: 10.6052/0459-1879-11-353
基金项目: 国家自然科学基金(11172317,91016001)和国家重点基础研究发展计划(2009CB724104)资助项目.
详细信息
  • 中图分类号: V211.3

DIRECT NUMERICAL SIMULATION OF DECAYING COMPRESSIBLE ISOTROPIC TURBULENC

Funds: The project was supported by the National Natural Science Foundation of China (11172317,91016001)and the National Basic Research Program of China (2009CB724104).
  • 摘要: 采用五阶有限差分WENO格式直接模拟了高初始湍流Mach数的可压缩均匀各向同性湍流,主要分析了湍流的统计特性 和压缩性的影响,包括能谱特征、激波串、耗散率、标度律等. 研究表明,湍动能主要来自于速度场螺旋分量的贡献;各向同性湍流的小尺度脉动对压缩性更为敏感,并且压缩性的增强加快了湍流大 尺度脉动向小尺度脉动的湍动能输运;随着湍流Mach数的升高,胀量(压缩)耗散率所占比率也显著增长. 标度律分析表明,强可压缩湍流的横向速度结构函数仍然具有扩展自相似性;当阶数较高(p ≥ 5)时,纵向速度结构函数的扩展自相似性则不再成立. 对于压缩性较弱的湍流,与不可压缩湍流一致,横向湍流脉动的间歇性要强于纵向湍流脉动;而对于强可压缩湍流,纵向湍流脉动的 间歇性要强于横向湍流脉动.

     

  • Orszag SA, Patterson GS. Numerical simulation of three-dimensional homogenous isotropic turbulence. Phys Rev Lett, 1972, 28: 76-79  
    Rogallo RS. Numerical experiments in a homogenous turbulence. NASA TM-81315, 1981. 1-91
    Moyal JE. The spectra of turbulence in a compressible fluid; eddy turbulence and random noise. Proc Camb Phil Soc, 1951, 48: 329-344
    Kovasznay LSG. Turbulence in supersonic flow. J Aeronaut Sci, 1953, 20: 657-682
    Chu BT, Kovasznay LSG. Non-linear interaction in a viscous heat-conducting compressible gas. J Fluid Mech, 1958, 3: 494-514  
    Feiereisen WJ, Reynolds WC, Ferziger JH. Numerical simulation of a compressible homogenous, turbulent shear flow. Rep.TF-13. 1981
    Passot T, Pouquent A. Numerical simulation of compressible homogeneous flows in the turbulent regime. J Fluid Mech, 1987, 181: 441-446  
    Sarkar S, Erlebacher G, Hussaini MY. The analysis and modeling of dilatational terms in compressible turbulence. J Fluid Mech, 1991, 227: 473-493  
    Erlebacher G, Hussaini MY, Kreiss HO et al. The analysis and simulation of compressible turbulence. Theoret Comput Fluid Dyn, 1990, 2: 73-95
    Lee S, Lele SK, Moin NP. Eddy shocklets in decaying compressible turbulence. Phys Fluids, 1991, A3: 657-644  
    Kida S, Orszag SA. Energy and spectral dynamics in forced compressible turbulence. J Sci Comput, 1990, 5(2): 85-125  
    Kida S, Orszag SA. Energy and spectral dynamics in decaying compressible turbulence. J Sci Comput, 1992, 7(1): 1-34  
    Blaisdell GA, Mansour NN, Reynolds WC. Compressibility effects on the growth and structure of homogeneous turbulent shear flow. J Fluid Mech, 1993, 256: 443-485  
    Ristorceli JR, Blaisdell GA. Consistent initial conditions for the DNS of compressible turbulence. Phys Fluids, 1997, 9: 4-6  
    Samtaney R, Pullin D, Kosovic B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys Fluids, 2001, 3(5): 1415-1430
    Kolmogorov AN. Local structure of the turbulence in an incompressible viscous fluid at very high Reynolds number. Dokl Akad Nauk SSSR, 1941, 30: 301-305 (Reprint: Proc R Soc London A, 1991, 434: 9-13)
    Benzi R, Ciliberto S, Tripiccione R, et al. Extended self-similarity in turbulent flow. Phys Rev E, 1993, 48(1): R29-R32  
    She ZS, Leveque E. Universal scaling laws in fully developed turbulence. Phys Rev Lett, 1994, 72(3): 336-339  
    Ponziani D, Pirozzoli S, Grasso F. Development of optimized weighted-ENO schemes for multiscale compressible flows. International Journal for Numerical Method in Fluids, 2003, 42: 953-977  
    Pirozzoli S, Grasso F. Direct numerical simulation of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys Fluids, 2004, 16(12): 4386-4407  
    Pirozzoli S, Grasso F. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25. Phys Fluids, 2004, 16(3): 530-545
    Wang J, Wang LP, Xiao Z, et al. A hybrid numerical simulation of isotropic compressible turbulence. J Comput Phys, 2010, 229: 5257-5279  
    Martin MP. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J Fluid Mech, 2007, 570: 347-364
    李新亮, 傅德薰, 马延文. 8阶群速度格式及其应用. 力学学报, 2004, 36(1): 79-83 (Li Xinliang, Fu Dexun, Ma Yanwen. Optimized group velocity control scheme. Acta Mechanica Sinica, 2004, 36(1): 79-83 (in Chinese)
    Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys, 2002, 178: 81-117  
    Martin MP, Taylor EM, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J Comput Phys, 2006, 220: 270-528  
    Zhang SH, Shu CW. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J Sci Com, 2006, 31(112): 273-305
    Zhang SH, Jiang SF, Shu CW. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. J Sci Com, 2010, 47: 216-238
    Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202-228  
    Zhang SH, Zhang YT, Shu CW. Multistage interaction of a shock wave and a strong vortex. Phys Fluids, 2005, 17: 116101  
    Zhang SH, Zhang YT, Shu CW. Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. Phys Fluids, 2006, 18: 126101  
    Zhang SH, Zhang HX, Shu CW. Topological structure of shock induced vortex breakdown. J Fluid Mech, 2009, 639: 343-372  
    Li XL, Fu DX, Ma YW. Direct numerical simulation of compressible isotropic turbulence . Science in China A, 2002, 45(11): 1452-1460  
    Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research. Annu Rev Fluid Mech, 1998, 30: 539-578  
    Pope SB. Turbulent Flows. Cambridge: Cambridge University Press, 2000. 346
    Ishihara T, Gotoh T, Kaneda Y. Study of high- reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech, 2009, 41: 165-180  
    Chen SY, Sreenivasan KR, Nelkin M, et al. Refined similarity hypothesis for transverse structure functions in fluids turbulence. Physical Review Letters, 1997, 79(12): 2253-2256  
    Dhruva B, Tsuji Y, Sreenivasan KR. Transverse structure functions in high-Reynolds-number turbulence. Physical. Review, 1997, E56(5): R4928-R4930
    毕卫涛,陈凯,魏庆鼎. 湍流标度律实验研究. 见:第六届全国湍流与流动稳定性学术会议暨第三届全国工程紊流与流动模拟学术会议论文. 2000 (Bi Weitao, Chen Kai, Wei Qingding. Experimental investigation of turbulence scaling law. In: Proc. of the 6th national conference on turbulence and flow instability and the 3rd national conference on engineering turbulence and flow simulation. 2000 (in Chinese)
  • 加载中
计量
  • 文章访问数:  2182
  • HTML全文浏览量:  60
  • PDF下载量:  1527
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-01
  • 修回日期:  2012-02-18
  • 刊出日期:  2012-07-18

目录

    /

    返回文章
    返回