Orszag SA, Patterson GS. Numerical simulation of three-dimensional homogenous isotropic turbulence. Phys Rev Lett, 1972, 28: 76-79
|
Rogallo RS. Numerical experiments in a homogenous turbulence. NASA TM-81315, 1981. 1-91
|
Moyal JE. The spectra of turbulence in a compressible fluid; eddy turbulence and random noise. Proc Camb Phil Soc, 1951, 48: 329-344
|
Kovasznay LSG. Turbulence in supersonic flow. J Aeronaut Sci, 1953, 20: 657-682
|
Chu BT, Kovasznay LSG. Non-linear interaction in a viscous heat-conducting compressible gas. J Fluid Mech, 1958, 3: 494-514
|
Feiereisen WJ, Reynolds WC, Ferziger JH. Numerical simulation of a compressible homogenous, turbulent shear flow. Rep.TF-13. 1981
|
Passot T, Pouquent A. Numerical simulation of compressible homogeneous flows in the turbulent regime. J Fluid Mech, 1987, 181: 441-446
|
Sarkar S, Erlebacher G, Hussaini MY. The analysis and modeling of dilatational terms in compressible turbulence. J Fluid Mech, 1991, 227: 473-493
|
Erlebacher G, Hussaini MY, Kreiss HO et al. The analysis and simulation of compressible turbulence. Theoret Comput Fluid Dyn, 1990, 2: 73-95
|
Lee S, Lele SK, Moin NP. Eddy shocklets in decaying compressible turbulence. Phys Fluids, 1991, A3: 657-644
|
Kida S, Orszag SA. Energy and spectral dynamics in forced compressible turbulence. J Sci Comput, 1990, 5(2): 85-125
|
Kida S, Orszag SA. Energy and spectral dynamics in decaying compressible turbulence. J Sci Comput, 1992, 7(1): 1-34
|
Blaisdell GA, Mansour NN, Reynolds WC. Compressibility effects on the growth and structure of homogeneous turbulent shear flow. J Fluid Mech, 1993, 256: 443-485
|
Ristorceli JR, Blaisdell GA. Consistent initial conditions for the DNS of compressible turbulence. Phys Fluids, 1997, 9: 4-6
|
Samtaney R, Pullin D, Kosovic B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys Fluids, 2001, 3(5): 1415-1430
|
Kolmogorov AN. Local structure of the turbulence in an incompressible viscous fluid at very high Reynolds number. Dokl Akad Nauk SSSR, 1941, 30: 301-305 (Reprint: Proc R Soc London A, 1991, 434: 9-13)
|
Benzi R, Ciliberto S, Tripiccione R, et al. Extended self-similarity in turbulent flow. Phys Rev E, 1993, 48(1): R29-R32
|
She ZS, Leveque E. Universal scaling laws in fully developed turbulence. Phys Rev Lett, 1994, 72(3): 336-339
|
Ponziani D, Pirozzoli S, Grasso F. Development of optimized weighted-ENO schemes for multiscale compressible flows. International Journal for Numerical Method in Fluids, 2003, 42: 953-977
|
Pirozzoli S, Grasso F. Direct numerical simulation of isotropic compressible turbulence: influence of compressibility on dynamics and structures. Phys Fluids, 2004, 16(12): 4386-4407
|
Pirozzoli S, Grasso F. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25. Phys Fluids, 2004, 16(3): 530-545
|
Wang J, Wang LP, Xiao Z, et al. A hybrid numerical simulation of isotropic compressible turbulence. J Comput Phys, 2010, 229: 5257-5279
|
Martin MP. Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments. J Fluid Mech, 2007, 570: 347-364
|
李新亮, 傅德薰, 马延文. 8阶群速度格式及其应用. 力学学报, 2004, 36(1): 79-83 (Li Xinliang, Fu Dexun, Ma Yanwen. Optimized group velocity control scheme. Acta Mechanica Sinica, 2004, 36(1): 79-83 (in Chinese)
|
Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys, 2002, 178: 81-117
|
Martin MP, Taylor EM, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J Comput Phys, 2006, 220: 270-528
|
Zhang SH, Shu CW. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions. J Sci Com, 2006, 31(112): 273-305
|
Zhang SH, Jiang SF, Shu CW. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes. J Sci Com, 2010, 47: 216-238
|
Jiang GS, Shu CW. Efficient implementation of weighted ENO schemes. J Comput Phys, 1996, 126: 202-228
|
Zhang SH, Zhang YT, Shu CW. Multistage interaction of a shock wave and a strong vortex. Phys Fluids, 2005, 17: 116101
|
Zhang SH, Zhang YT, Shu CW. Interaction of an oblique shock wave with a pair of parallel vortices: Shock dynamics and mechanism of sound generation. Phys Fluids, 2006, 18: 126101
|
Zhang SH, Zhang HX, Shu CW. Topological structure of shock induced vortex breakdown. J Fluid Mech, 2009, 639: 343-372
|
Li XL, Fu DX, Ma YW. Direct numerical simulation of compressible isotropic turbulence . Science in China A, 2002, 45(11): 1452-1460
|
Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research. Annu Rev Fluid Mech, 1998, 30: 539-578
|
Pope SB. Turbulent Flows. Cambridge: Cambridge University Press, 2000. 346
|
Ishihara T, Gotoh T, Kaneda Y. Study of high- reynolds number isotropic turbulence by direct numerical simulation. Annu Rev Fluid Mech, 2009, 41: 165-180
|
Chen SY, Sreenivasan KR, Nelkin M, et al. Refined similarity hypothesis for transverse structure functions in fluids turbulence. Physical Review Letters, 1997, 79(12): 2253-2256
|
Dhruva B, Tsuji Y, Sreenivasan KR. Transverse structure functions in high-Reynolds-number turbulence. Physical. Review, 1997, E56(5): R4928-R4930
|
毕卫涛,陈凯,魏庆鼎. 湍流标度律实验研究. 见:第六届全国湍流与流动稳定性学术会议暨第三届全国工程紊流与流动模拟学术会议论文. 2000 (Bi Weitao, Chen Kai, Wei Qingding. Experimental investigation of turbulence scaling law. In: Proc. of the 6th national conference on turbulence and flow instability and the 3rd national conference on engineering turbulence and flow simulation. 2000 (in Chinese)
|