DETERMINATION OF ENTRAINMENT RATE FOR SUPERCAVITATION VEHICLE
-
摘要: 通气超空化技术是大幅提高水下航行体速度的重要途径,通气流量率的确定是实现该技术的核心问题之一. 通常 的流量率预估没有考虑雷诺数的影响,因而造成统计数据过于分散. 基于边界层理论及其相关假设,提出了一种确定人工通气超空化气体流量率的预估方法,并引用相关试验数据进行验证. 结果表明,所得近似关系式在雷诺数为0.35×105~ 5.4×105, 空化器锥角为30°~ 180°的变化范围内都是适用的.Abstract: The effect of liquid viscosity on an annular swirling viscous liquid jet with different swirl strength values is studied with linear instability analysis. The spatial mode instability analysis for para-sinuous mode and para-varicose mode is carried out. An analytical form of dispersion relation is derived, which governs the disturbance growth for an annular swirling viscous liquid sheet with a solid vortex swirl velocity profile subjected to three-dimensional disturbances. The results show that, with higher swirl strength, the increase of viscosity hinders the breakup and makes the domain frequency and domain wave number smaller. However, at low swirl strength, the increase of viscosity speeds up the breakup, makes the domain frequency in the para-sinuous mode first decrease and then increase and makes the domain frequency in the para-varicose mode increase. Furthermore, at low swirl strength, the domain wave number in the para-sinuous mode first decreases and then increases, the domain wave number in the para-varicose mode increases with an increase in liquid viscosity.
-
杨武刚,张宇文,阚雷等. 通气法控制超空泡流动的试验研究.应用力学学报, 2007: 24(4): 504-508 (Yang Wugang, Zhang Yuwen, Kan Lei, et al. Experimental investigation to supercavitation flow with ventilated method.Chinese Journal of Applied Mechanics, 2007, 24(3): 504-508 (in Chinese) Yang WG, Zhang YW, Yang J, et al. Three dimensional multiphase computational fluid dynamics analysis of ventilated supercavitation. Chinese Journal of Mechanical Engineering, 2008, 21(1): 61-65 Spurk JH. On the gas loss from ventilated supercavities. Acta Mechanica, 2002, 155: 125-135 Logvinovich GV.Hydrodynamics of Flows with Free Boundary. New York: Halsted Press, 1969 (in Russian) Semenenko VN. Artificial supercavitation: physics and calculation. In: Proc. RTO AVT Lecture Series on Supercavitating Flows, von Karman Institute, Brussels Belgium, February12-16, 2001, ADA400728: 206-237 Franc JP. Michel JM. Fundamentals of Cavitation. In: Moreau R ed., Fluid Mechanics and its Applications, Volume 76, Madylam, New York: Kluwer Academic Publishers, 2005. 105-117, 200-216 Savchenko YN. Supercavitation problems and perspectives. In: Proceeding of 4th International Symposium on Cavitation, June 20-23, 2001, California: California Institute of Technology, Pasadena, CA USA: CAV2001, Lecture. 2001, 003: 1-8 Kuklinski R, Henoch C, Castano J. Experimental study of ventilated cavities on dynamic test model. In: Proceeding of 4th International Symposium on Cavitation, June 20-23, 2001, California: California Institute of Technology, Pasadena, CA USA: Cav2001, Session B3. 2001, 004: 1-8 Schlichting H. Boundary Layer Theory. New York: McGraw-Hill, 1979. 635-665 Spurk JH. Effect of gas temperature on the gas loss from ventilated cavity. Acta Mechanica, 2004, 172: 75-81 -

计量
- 文章访问数: 2281
- HTML全文浏览量: 78
- PDF下载量: 743
- 被引次数: 0