EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透射边界高频失稳机理及其消除方法——SH波动

谢志南 廖振鹏

谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法——SH波动[J]. 力学学报, 2012, (4): 745-752. doi: 10.6052/0459-1879-11-312
引用本文: 谢志南, 廖振鹏. 透射边界高频失稳机理及其消除方法——SH波动[J]. 力学学报, 2012, (4): 745-752. doi: 10.6052/0459-1879-11-312
Xie Zhinan, Liao Zhenpeng. MECHANISM OF HIGH FREQUENCY INSTABILITY CAUSED BY TRANSMITTING BOUNDARY AND METHOD OF ITS ELIMINATION——SH WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 745-752. doi: 10.6052/0459-1879-11-312
Citation: Xie Zhinan, Liao Zhenpeng. MECHANISM OF HIGH FREQUENCY INSTABILITY CAUSED BY TRANSMITTING BOUNDARY AND METHOD OF ITS ELIMINATION——SH WAVE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 745-752. doi: 10.6052/0459-1879-11-312

透射边界高频失稳机理及其消除方法——SH波动

doi: 10.6052/0459-1879-11-312
基金项目: 国家自然科学基金(51108431,51078337)和中国地震局优秀团队研究基金资助项目.
详细信息
  • 中图分类号: P315

MECHANISM OF HIGH FREQUENCY INSTABILITY CAUSED BY TRANSMITTING BOUNDARY AND METHOD OF ITS ELIMINATION——SH WAVE

Funds: The project was supported by the National Natural Science Foundation of China (51108431, 51078337) and Research Group Fund of China Earthquake Administration.
  • 摘要: 用有限元法求解近场波动问题,须选取人工边界条件以实现对无限域稳定、高效的数值模拟. 该文探讨了SH波导 有限元数值模拟中透射边界引发的高频失稳问题. 从离散模型出发,分析了内节点与人工边界节点运动方程频散曲线之间的匹配关系,揭示了高频失稳的一种机理,即二者相互耦合所 得计算方案支持自发从人工边界向计算区域内行进的高频波动. 提出通过调整内节点运动方程以改变这一匹配关系,从而消除失稳的措施. 理论分析与数值结果表明该措施能有效地消除高频振荡失稳.

     

  • 廖振鹏. 工程波动理论导论 (第2版). 北京: 科学出版社, 2002 (Liao Zhenpeng. Introduction to Wav Motion Theories in Engineering (2nd edn). Beijing: Science Press, 2002 (in Chinese)
    Bérenger JP. Perfectly Matched Layer (PML) for Computational Electromagnetics. California: Morgan and Claypool Publishers, 2007
    Givoli D. Numerical Methods for Problems in Infinite Domains. Amsterdam: Elsevier, 1992
    Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations. Bulletin of the Seismological Society of America, 1977, 67(6): 1529-1540
    Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations. Communications on Pure and Applied Mathematics, 1980, 33(6): 707-725  
    Liao ZP, Wong HL, Yang BP, et al. A Transmitting boundary for transient wave analyses. Scientia Sinica(Series A). 1984, 27(10): 1063-1076
    Higdon RL. Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation. Mathematics of Computation, 1986, 47(176): 437-459
    Cerjan C, Kosloff D, Kosloff R, et al. A nonreflecting boundary conditions for discrete acoustic and elastic wave equations. Geophysics, 1985, 50(4): 705-708
    Sochaki I, Kubichek R, George J, et al. Absorbing boundary conditions and surface waves. Geophysics, 1987, 52(1): 60-71
    Bérenger JP. A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994, 114(2): 185-200  
    Grote MJ, Keller JB. Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM Journal on Applied Mathematics, 1995, 55(2): 280-297  
    Rowley CW, Colonius T. Discretely nonreflecting boundary conditions for linear hyperbolic systems. Journal of Computational Physics, 2000, 157(2): 500-538  
    Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 2007, 72(5): SM155-SM167
    Hagstrom T, Mar-Or A, Givoli D. High-order local absorbing conditions for the wave equation: Extensions and improvements. Journal of Computational Physics, 2008, 227(6): 3322-3357  
    Meza-Fajardo KC, Papageorgiou AS. On the stability of a non-convolutional perfectly matched layer for isotropic elastic media. Soil Dynamics and Earthquake Engineering, 2010, 30(3): 68-81  
    Du XL, Zhao M. A local time-domain transmitting boundary for simulating cylindrical elastic wave propagation in infinite media. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 937-946  
    Zhao M, Du XL, Liu JB, et al. Explicit finite element artificial boundary scheme for transient scalar waves in two-dimensional unbounded waveguide. International Journal for Numerical Methods in Engineering, 2011, 87(11): 1074-1104.  
    Liao ZP, Zhou ZH, Zhang YH. Stable implementation of transmitting boundary in numerical simulation of wave motion. Chinese Joural of Geophysics, 2002, 45(4): 554-568
    Liao ZP, Liu JB. Numerical instabilities of a local transmitting boundary. Earthquake Engineering & Structural Dynamics, 1992, 21(1): 65-77  
    杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件.力学学报, 2006, 38(1): 49-56 (Du Xiuli, Zhao Mi, Wang Jinting. A stress artificial boundary in FEA for near-field wave problem. Chinese Journal of Theoretical and Mechanics, 2006, 38(1): 49-56 (in Chinese)
    谢志南. 波动数值模拟人工边界的稳定问题. [博士论文].哈尔滨: 中国地震局工程力学研究所, 2011 (Xie Zhinan. Stability problems of artificial boundary conditions in numerical wave simulation. [PhD Thesis]. Dalian: Institute of Engineering Mechanics, China Earthquake Administration, 2011 (in Chinese)
    廖振鹏,谢志南. 波动数值模拟的稳定性. 哈尔滨工程大学学报, 2011, 32(9): 1254-1261 (Liao Zhenpeng, Xie Zhinan. stability of numerical simulation of wave motion. Journal of Harbin Engineering University, 2011, 32(9): 1254-1261 (in Chinese)
    关慧敏,廖振鹏. 局部人工边界稳定性的一种分析方法. 力学学报,1996, 28(3): 376-380 (Guan Huimin, Liao Zhenpeng. A method for the stability analysis of local artificial boundaries. Acta Mechanica Sinica,1996, 28(3): 376-380 (in Chinese)
    景立平, 廖振鹏, 邹经湘. 多次透射公式的一种高频失稳机制. 地震工程与工程振动, 2002, 22(1): 7-13 (Jing Liping, Liao Zhenpeng, Zou Jingxiang. A high-frequency instability mechanism in numerical realization of multi-transmitting formula. Earthquake Engineering and Engineering Vibration, 2002, 22(1): 7-13 (in Chinese)
    Gustafsson B, Kreiss HO, Sundström A. Stability theory of difference approximations for initial boundary value problems II. Mathematics of Computation, 1972, 26(119): 649-686  
    Trefethen LN. Group velocity interpretation of the stability theory of Gustafsson Kreiss and Sundstrom. Journal of Computational Physics, 1983, 49(2): 199-217  
    Godunov S, Ryabenkii V. Spectral stability criteria for boundary value problems for non-self-adjoint difference equations. Russian Mathematical Surveys, 1963, 18(3): 1-12  
  • 加载中
计量
  • 文章访问数:  1687
  • HTML全文浏览量:  82
  • PDF下载量:  1000
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-31
  • 修回日期:  2012-02-16
  • 刊出日期:  2012-07-18

目录

    /

    返回文章
    返回