EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于壁面主动变形的湍流减阻控制研究

葛铭纬 许春晓 黄伟希 崔桂香

葛铭纬, 许春晓, 黄伟希, 崔桂香. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2012, (4): 653-663. doi: 10.6052/0459-1879-11-198
引用本文: 葛铭纬, 许春晓, 黄伟希, 崔桂香. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2012, (4): 653-663. doi: 10.6052/0459-1879-11-198
Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. doi: 10.6052/0459-1879-11-198
Citation: Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. doi: 10.6052/0459-1879-11-198

基于壁面主动变形的湍流减阻控制研究

doi: 10.6052/0459-1879-11-198
基金项目: 国家自然科学基金资助项目(10925210,11002081).
详细信息
  • 中图分类号: O357.5

DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION

Funds: The project was supported by the National Natural Science Foundation of China (10925210, 11002081).
  • 摘要: 采用谱方法, 对反向控制下壁面主动变形的槽道湍流进行了直接数值模 拟研究. 结果表明, 在壁面最大变形量小于5倍黏性尺度条件下, 压差阻力可略, 摩擦阻力 降低7.6%. 施加控制后, 湍流强度和雷诺应力受到明显抑制, 平均速度剖面对数区上移. 受壁面法向运动的影响, 条带结构强度减弱、尺度变大; 流向涡外移且强度减弱, 其倾斜和 抬起的角度均有不同程度的减小. 壁面变形呈现流向拉长的凹槽结构, 其平均间距 为90倍黏性尺度.

     

  • Kravchenko AG, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys Fluids A, 1993, 5: 3307  
    Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech, 1994, 262: 75  
    Kang S, Choi H. Active wall motions for skin-friction drag reduction. Phys Fluids, 2000, 12(12): 3301-3304  
    Endo T. Feedback control of wall turbulence with wall deformation. Int J Heat Fluid Flow, 2000, 21: 568-575  
    Ge MW, Xu CX, Cui GX. Direct numerical simulation of flow in channel with time-dependent wall geometry. Appl Math Mech, 2010, 31(1): 97-108  
    Hammond EP, Bewley TR, Moin P. Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phy Fluids, 1998, 10(9): 2421-2423  
    Chung YM, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Phys Fluids, 2011, 23: 025102  
    Schlichting H. Boundary Layer Theory. New York: McGraw-Hill Book Company, 1979
    Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids, 2002, 14(11): L73-L76  
    Jeong J, Hussain F, Schoppa W, et al. Coherent structures near the wall in a turbulent channel flow. J Fluid Mech, 1997, 332: 185-241
    Johanson AV, Alfredsson PH, Kim J. Evolution and dynamics of shear-layer structures in near-wall turbulence. J Fluid Mech, 1991, 224: 459-599
    Hamilton JM, Kim J, Waleffe F. Regeneration mechanisms of near-wall turbulence structures. J Fluid Mech, 1995, 287: 317-348  
    Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets. J Fluid Mech, 1993, 255: 503-539  
    Mito Y, Kasagi N. DNS study of turbulence modification with streamwise-uniform sinusoidal wall-oscillation. Int J Heat Fluid Fl, 1998, 19: 470-481  
  • 加载中
计量
  • 文章访问数:  2930
  • HTML全文浏览量:  65
  • PDF下载量:  1351
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-12
  • 修回日期:  2011-12-25
  • 刊出日期:  2012-07-18

目录

    /

    返回文章
    返回