EI、Scopus 收录
中文核心期刊

空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制

夏鹏程, 罗建军, 王明明

夏鹏程, 罗建军, 王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制[J]. 力学学报, 2021, 53(4): 1138-1155. DOI: 10.6052/0459-1879-20-449
引用本文: 夏鹏程, 罗建军, 王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制[J]. 力学学报, 2021, 53(4): 1138-1155. DOI: 10.6052/0459-1879-20-449
Xia Pengcheng, Luo Jianjun, Wang Mingming. A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1138-1155. DOI: 10.6052/0459-1879-20-449
Citation: Xia Pengcheng, Luo Jianjun, Wang Mingming. A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1138-1155. DOI: 10.6052/0459-1879-20-449
夏鹏程, 罗建军, 王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制[J]. 力学学报, 2021, 53(4): 1138-1155. CSTR: 32045.14.0459-1879-20-449
引用本文: 夏鹏程, 罗建军, 王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制[J]. 力学学报, 2021, 53(4): 1138-1155. CSTR: 32045.14.0459-1879-20-449
Xia Pengcheng, Luo Jianjun, Wang Mingming. A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1138-1155. CSTR: 32045.14.0459-1879-20-449
Citation: Xia Pengcheng, Luo Jianjun, Wang Mingming. A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1138-1155. CSTR: 32045.14.0459-1879-20-449

空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制

基金项目: 1)深圳市科技研发资金(JCYJ20190806154412671);国家自然科学基金(61973256);国家自然科学基金(61690211);国家自然科学基金(61690210)
详细信息
    作者简介:

    2)王明明, 副教授, 主要研究方向: 空间机器人运动规划与控制. E-mail: mwang@nwpu.edu.cn

    通讯作者:

    王明明

  • 中图分类号: V448.2

A ROBUST STABILIZATION CONTROL FOR DUAL-ARM SPACE ROBOT CAPTURING TUMBLING TARGET

  • 摘要: 针对空间双臂机器人抓捕翻滚目标的稳定控制问题, 由于目标惯性参数的不确定性以及双臂同时作用于目标存在内力挤压, 已有的稳定控制方法无法有效地约束机械臂末端与目标的接触力与力矩, 无法保证控制过程中抓捕点处的接触安全. 为此, 本文考虑被抓捕目标惯性参数不确定性与双臂内力挤压对抓捕后阶段组合体稳定控制的影响, 提出了一种保证接触安全的鲁棒稳定控制方法. 首先, 根据目标的有界不确定性构造鲁棒正不变集, 同时考虑双臂与目标接触内力的影响, 利用预测控制方法在该不变集内规划控制目标运动的虚拟接触力与力矩. 然后, 根据目标动力学模型以及空间双臂机器人的运动约束, 规划空间双臂机器人的鲁棒安全期望运动轨迹. 最后, 利用障碍李雅普诺夫函数构造跟踪控制器, 使空间双臂机器人有效地跟踪期望轨迹, 从而使得翻滚目标运动受到等效于虚拟控制律的作用, 在保证接触安全的同时实现鲁棒的稳定控制. 通过空间双臂机器人稳定翻滚目标的仿真算例验证了所提方法的有效性.
    Abstract: Due to the inaccurate inertia parameters of the captured tumbling target and the internal wrenches at the grasping points, the motion of the space robot stabilizing the tumbling target cannot be planned and controlled effectively in the post-capture phase. In the existing studies, it is risky to track the desired trajectory planned by inaccurate parameters, which cannot restrain the contact wrenches and guarantee the safety of the grasping points. In order to control the post-capture dual-arm space robot safely, a robust control scheme is proposed for the dual-arm space robot capturing a tumbling target in this paper, where the influences of the inaccurate target inertia parameters and the internal wrenches at the grasping points are considered. First, a robust invariant set is constructed considering the influences of the inaccurate target parameters and internal stress wrenches. Then, to plan a safe desired motion for the dual-arm space robot, a virtual robust control law for the captured target is developed, where the desired trajectory of the target is planned within the constructed invariant sets. By the motion constraints between the space robot and the target, a robust desired trajectory of the dual-arm space robot is obtained. A barrier Lyapunov function based constrained controller is developed to track the robust trajectory efficiently. By tracking the robust trajectory with prescribed control performance, the designed virtual control law is applied to stabilize the captured target. During the stabilization control process, the measured contact wrenches can be restrained by the proposed scheme effectively, which guarantees the safety of the grasping points and the reliability of the stabilization control. The effectiveness of the proposed scheme is validated via the digital simulations, where a non-cooperative tumbling target is stabilized by a dual-arm space robot.
  • [1] Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014,68(8):1-26
    [2] Hambuchen KA, Roman MC, Sivak A, et al. NASA's space robotics challenge: advancing robotics for future exploration missions//AIAA SPACE and Astronautics Forum and Exposition, 2017: 5120
    [3] Gallagher WJ, Solberg K, Gefke GG, et al. A survey of enabling technologies for in-space assembly and servicing//2018 AIAA SPACE and Astronautics Forum and Exposition, 2018: 5116
    [4] Aghili F. Optimal trajectories and robot control for detumbling a non-cooperative satellite. Journal of Guidance, Control, and Dynamics, 2020,43(5):981-988
    [5] Dimitrov DN, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), IEEE, 2004,4:3345-3350
    [6] 戈新生, 陈凯捷. 自由漂浮空间机器人路径优化的Legendre 伪谱法. 力学学报, 2016,48(4):823-831

    (Ge Xinsheng, Chen Kaijie. Path planning of free floating space robot using legendre pseudospectral method. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):823-831 (in Chinese))

    [7] Zong L, Emami MR, Luo J. Reactionless control of free-floating space manipulators. IEEE Transactions on Aerospace and Electronic Systems, 2020,56(2):1490-1503
    [8] Oki T, Nakanishi H, Yoshida K. Whole-body motion control for capturing a tumbling target by a free-floating space robot//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007: 2256-2261
    [9] 王明明, 罗建军, 余敏 等. 冗余空间机械臂抓捕自旋卫星后的消旋控制. 宇航学报, 2018,39(5):84-95

    (Wang Mingming, Luo Jianjun, Yu Min, et al. Detumbling control for kinematic redundant space manipulator post-grasping a rotational satellite. Journal of Astronautica, 2018,39(5):84-95 (in Chinese))

    [10] Misra G, Bai X. Task-constrained trajectory planning of free-floating space-robotic systems using convex optimization. Journal of Guidance, Control, and Dynamics, 2017,40(11):2857-2870
    [11] 宗立军, 罗建军, 王明明 等. 自由漂浮空间机器人多约束混合整数预测控制. 宇航学报, 2016,37(8):992-1000

    (Zong Lijun, Luo Jianjun, Wang Mingming, et al. A mixed integer predictive controller with multi-constraint for free-floating space robots. Journal of Astronautica, 2016,37(8):992-1000 (in Chinese))

    [12] 余敏, 罗建军, 王明明 等. 一种改进RRT*结合四次样条的协调路径规划方法. 力学学报, 2020,52(4):1024-1034

    (Yu Min, Luo Jianjun, Wang Mingming, et al. Coordinated path planning by integrating improved RRT* and quartic spline. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(4):1024-1034 (in Chinese))

    [13] Wu YH, Yu ZC, Li CY, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot. Aerospace Science and Technology, 2020,98:105657
    [14] Yan L, Xu W, Hu Z, et al. Multi-objective configuration optimization for coordinated capture of dual-arm space robot. Acta Astronautica, 2020,167:189-200
    [15] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究. 航空学报, 2012,33(12):2347-2354

    (Zhang Fuhai, Fu Yili, Wang Shuguo. Adaptive control of free-floating space robot with inertia parameter uncertainties. Acta Aeronauticaet Astronautica Sinica, 2012,33(12):2347-2354 (in Chinese))

    [16] Kernot J, Ulrich S. Adaptive control of a tendon-driven manipulator for the capture of non-cooperative space targets//AIAA Scitech 2020 Forum, 2020: 2080
    [17] Jayakody HS, Shi L, Katupitiya J, et al. Robust adaptive coordination controller for a spacecraft equipped with a robotic manipulator. Journal of Guidance, Control, and Dynamics, 2016,39(12):2699-2711
    [18] Han D, Huang P, Liu X, et al. Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robot. Acta Astronautica, 2020,176:24-32
    [19] 程靖, 陈力. 空间机器人双臂捕获卫星力学分析及镇定控制. 力学学报, 2016,48(4):832-842

    (Cheng Jing, Chen Li. Mechanical analysis and calm control of dual-arm space robot for capturing a satellite. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):832-842 (in Chinese))

    [20] Hogan N. Impedance control: An approach to manipulation//1984 American Control Conference, IEEE, 1984: 304-313
    [21] Caccavale F, Natale C, Siciliano B, et al. Six-dof impedance control based on angle/axis representations. IEEE Transactions on Robotics and Automation, 1999,15(2):289-300
    [22] Caccavale F, Chiacchio P, Marino A, et al. Six-dof impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 2008,13(5):576-586
    [23] Abiko S, Lampariello R, Hirzinger G. Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006: 1020-1025
    [24] 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019,51(4):1156-1169

    (Zhu An, Chen Li. Mechanical simulation and full ordered sliding mode collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1156-1169 (in Chinese))

    [25] Yoshida K, Nakanishi H. Impedance matching in capturing a satellite by a space robot//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), IEEE, 2003,4:3059-3064
    [26] Rastegari R, Moosavian SAA. Multiple impedance control of space free-flying robots via virtual linkages. Acta Astronautica, 2010,66(5-6):748-759
    [27] Nakanishi H, Yoshida K. Impedance control for free-flying space robots-basic equations and applications//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2006: 3137-3142
    [28] Stolfi A, Gasbarri P, Sabatini M. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronautica, 2017,139:243-253
    [29] Uyama N, Narumi T. Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative satellite. IFAC-PapersOnLine, 2016,49(17):230-235
    [30] Xia P, Luo J, Wang M, et al. Constrained compliant control for space robot postcapturing uncertain target. Journal of Aerospace Engineering, 2019,32(1):04018117
    [31] Gangapersaud RA, Liu G, de Ruiter AHJ. Robust coordination control of a space manipulator to detumble a non-cooperative target. Acta Astronautica, 2020,179:266-279
    [32] Gangapersaud RA, Liu G, de Ruiter AHJ. Detumbling of a non-cooperative target with unknown inertial parameters using a space robot. Advances in Space Research, 2019,63(12):3900-3915
    [33] Rawlings JB, Mayne QM, et al. Model Predictive Control: Theory and Design. Madison, WI: Nob Hill Pub, 2009
    [34] Tee KP, Ge SS, Tay EH. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009,45(4):918-927
  • 期刊类型引用(5)

    1. 刘东博,陈力. 基于模糊逻辑的双臂空间机器人在轨辅助对接操作变结构力/位控制. 机械工程学报. 2025(01): 60-70 . 百度学术
    2. 徐玉龙,王学林,张磊,王鹏,陈昊,赵立德,肖千. 基于干扰观测器的欠驱动手指滑模控制. 齐鲁工业大学学报. 2023(02): 1-7 . 百度学术
    3. 宋涛涛,李艳萍,李洪港,韩春雪. 基于改进变结构趋近律的机械臂滑模控制系统. 计算机与现代化. 2023(12): 14-18 . 百度学术
    4. 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制. 浙江大学学报(工学版). 2022(06): 1168-1174 . 百度学术
    5. 汤万兴,艾海平,陈力. 漂浮基空间机器人固定时间收敛主动容错控制. 福州大学学报(自然科学版). 2022(05): 650-657 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  966
  • HTML全文浏览量:  170
  • PDF下载量:  124
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-12-23
  • 刊出日期:  2021-04-09

目录

    /

    返回文章
    返回