LOCKING PROBLEM AND LOCKING ALLEVIATION OF ANCF/CRBF PLANAR BEAM ELEMENTS
-
摘要: 本文系统地研究了基于一致旋转场列式的绝对节点坐标 (ANCF consistentrotation-based formulation, ANCF/CRBF)平面梁单元的泊松闭锁问题及闭锁缓解技术.为了全面理解该类型单元的闭锁特性及明确单元的应用范围,文中首先开发了两种新的ANCF/CRBF刚性截面梁单元, 新单元在ANCF全参数梁的基础上,对梯度向量施加正交矩阵约束, 得到梯度与转角对时间导数之间的速度转换矩阵,从而引入转角参数. 新单元节点处完全消除了泊松闭锁和剪切效应,这是与传统ANCF/CRBF刚性截面梁单元的不同之处. 然后,对比分析了这三种ANCF/CRBF刚性截面梁单元泊松闭锁的特点.发现该类型单元对节点的横向梯度施加了运动学约束, 导致节点处截面不能变形,无法捕捉泊松效应, 但是单元内部能完全捕捉,这种不连续情况会加重单元整体的泊松闭锁问题. 并且发现对单元梯度约束的越多,闭锁问题越严重. 随后, 分别采用两种闭锁缓解技术, 弹性线方法和应变分解方法,进一步研究了单元的收敛性. 最终,通过多种静力学和动力学测试研究了泊松闭锁对ANCF/CRBF平面梁单元计算精度的影响及闭锁缓解技术在该类型单元上的缓解效果.Abstract: In this paper, the Poisson locking on the consistent rotation-based formulation (CRBF) of the planar beam element based on the absolute nodal coordinate formulation (ANCF) kinematic description is discussed. First of all, in order to fully understand the locking problem of ANCF/CRBF element, two new ANCF/CRBF planar beams are developed by constraining all of the position-vector gradients of ANCF planar fully-parameterized beam with an orthogonal matrix. Using this orthogonal matrix, a nonlinear velocity transformation matrix is evaluated to write the time derivatives of the ANCF gradients at the nodes in terms of the time derivatives of the rotation parameter. Two new ANCF/CRBF beams have a rigid cross-section and no shear effect. One of the new ANCF/CRBF beams has two position vectors, one rotation angle and one axial extensibility parameter as the nodal coordinates, while the other does not have a longitudinal extensibility parameter. Then, the difference in the Poisson locking problem among the two new ANCF/CRBF beams and traditional ANCF/CRBF beam is discussed. It can be concluded that since the constraints imposed on the position-gradient vectors, ANCF/CRBF beam has an insufficient Poisson effect on the nodes and a sufficient Possion effect in the interior of the element. This inconsistent Poisson effect will lead to a more severe locking problem than ANCF fully-parameterized elements. Furthermore, the locking problem increases with the number of constraints on the nodal gradients, that is ANCF/CRBF new beams have a more serious locking effect compared to traditional ANCF/CRBF beam. Finally, in order to achieve a better convergence of the new elements, two locking alleviation methods, Elastic Center Line (ECL) and Strain Split Method (SSM), are used. The locking problem on the performance of ANCF/CRBF beams is tested using several examples that include static and dynamic examples, in order to identify the scope of applicability of such elements. The numerical results obtained from ANCF/CRBF beams are compared with the ANCF beam, and with the conventional beam implemented in a commercial finite element software LS-DYNA.
-
-
[1] 黄文虎, 邵成勋. 多柔体系统动力学. 北京: 科学出版社, 1996 (Huang Wenhu, Shao Chengxu. Flexible Multibody Systems Dynamics. Beijing: China Science Publishing, 1996 (in Chinese))
[2] 陆佑方. 柔性多体系统动力学. 北京: 高等教育出版社, 1996 (Lu Youfang. Dynamics of Flexible Multibody Systems. Beijing: Higher Education Press, 1996 (in Chinese))
[3] 洪嘉振. 计算多体动力学. 北京: 高等教育出版社, 1999 (Hong Jiazhen. Computational Dynamics of Multibody Systems. Beijing: Higher Education Press, 1999 (in Chinese))
[4] 覃正. 多体系统动力学压缩建模. 北京: 科学出版社, 2000 (Tan Zheng. Compression Modeling of Multibody Systems. Beijing: China Science Publishing, 2000 (in Chinese))
[5] 齐朝辉. 多体系统动力学. 北京: 科学出版社, 2008 (Qi Zhaohui. Dynamics of Multibody Systems. Beijing: China Science Publishing, 2008 (in Chinese))
[6] 刘延柱, 潘振宽, 戈新生. 多体系统动力学. 北京: 科学出版社, 2014 (Liu Yanzhu, Pan Zhenkuan, Ge Xinsheng. Dynamics of Multibody Systems. Beijing: Higher Education Press, 2014 (in Chinese))
[7] 田强, 刘铖, 李培, 等. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 2017,15(5):385-405 (Tian Qiang, Liu Cheng, Li Pei, et al. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 2017,15(5):385-405 (in Chinese))
[8] Roberson RE, Schwertassek R. Dynamics of Multibody Systems. Berlin: Springer, 1998 [9] Huston RL. Multibody dynamics-modeling and analysis methods. Applied Mechanics Reviews, 1991,44(3):109-109 [10] Zienkkiewicz OC. The Finite Element Method, 3rd edn. New York: McGraw Hill, 1977 [11] Belytschko T, Hsieh BJ. Nonlinear transient finite element analysis with convected coordinates. International Journal for Numerical Methods in Engineering, 1973,7(3):255-271 [12] Belytschko T, Liu WK, Moran B. Nonlinear Finite Elements for Continua and Structures. New York: Wiley, 2000 [13] 史加贝, 刘铸永, 洪嘉振. 柔性多体动力学的共旋坐标法. 力学季刊, 2017,38(2):197-214 (Shi Jiabei, Liu Zhuyong, Hong Jiazhen. The co-rotational formulation for flexible multibody dynamics. Chinese Quarterly Mechanics. 2017,38(2):197-214 (in Chinese))
[14] 和兴锁, 李雪华, 邓峰岩. 平面柔性梁的刚-柔耦合动力学特性分析与仿真. 物理学报, 2011,60(2):024502 (He Xingsuo, Li Xuehua, Deng Fengyan. Analysis and imitation of dynamic properties for rigid-flexible coupling systems of a planar flexible beam. Acta Physica Sinica, 2011,60(2):024502 (in Chinese))
[15] Simo JC. A finite strain beam formulation. the three-dimensional dynamic problem. Part I. Computer Methods in Applied Mechanics and Engineering, 1985,49:55-70 [16] Simo JC, Vu-Quoc L. A three-dimensional finite-strain rod model. Part II: computational aspects. Computer Methods in Applied Mechanics and Engineering, 1986,58:79-116 [17] 吴坛辉, 洪嘉振, 刘铸永. 非线性几何精确梁理论研究综述. 中国科技论文, 2013,8(11):1126-1130 (Wu Tanhui, Hong Jiazhen, Liu Zhuyong. Advances of geometrically exact 3D beam theory. China Science Paper. 2013,8(11):1126-1130 (in Chinese))
[18] 张志刚, 齐朝晖, 吴志刚. 一种基于应变插值大变形梁单元的刚-柔耦合动力学分析. 振动工程学报, 2015,28(3):337-344 (Zhang Zhigang, Qi Zhaohui, Wu Zhigang. Rigid-flexible dynamics analysis of a large deformation beam element based on interpolation of strains. Journal of Vibration Engineering, 2015,28(3):337-344 (in Chinese))
[19] 王珍, 刘铖, 胡海岩. 三维全参数ANCF梁与几何精确梁单元对比研究-柔耦合动力学分析// 第十届全国多体动力学与控制暨全国航天动力学与控制学术会议论文集, 青岛, 2017-09-22 (Wang Zhen, Liu Cheng, Hu Haiyan. Comparison of the absolute nodal coordinate and geometrically exact formulations for beams// Proceedings of the 10th MAADyCC, Qingdao, 2017-09-22 (in Chinese))
[20] Ding JY, Wallin M, Wei C, et al. Use of independent rotation field in the large displacement analysis of beams. Nonlinear Dynamics, 2014,76(3):1829-1843 [21] Shabana AA. Computational Continuum Mechanics. 3rd ed. Chichester: Wiley, 2018 [22] 李彬, 刘锦阳. 大变形柔性梁系统的绝对坐标方法, 上海交通大学学报, 2005,39(5):827-831 (Li Bin, Liu Jinyang. Application of absolute nodal coordinate formulation in flexible beams with large deformation. Journal of Shanghai Jiaotong University, 2005,39(5):827-831 (in Chinese))
[23] 田强, 张云清, 陈立平, 等. 柔性多体系统动力学绝对节点坐标方法研究进展. 力学进展, 2010,40(2):189-202 (Tian Qiang, Zhang Yunqing, Chen Liping, et al. Review of the advances in absolute nodal coordinate formulation in flexible multi-body system dynamics. Advances in Mechanics, 2010,40(2):189-202 (in Chinese))
[24] 刘铖, 田强, 胡海岩. 基于绝对节点坐标的多柔体系统动力学高效计算方法. 力学学报, 2010,42(6):1197-1205 (Liu Cheng, Tian Qiang, Hu Haiyan. Efficient computational method for dynamics of flexible multibody systems based on absolute nodal coordinate. Chinese Journal of Theoretical and Applied Mechanics, 2010,42(6):1197-1205 (in Chinese))
[25] 赵春璋, 余海东, 王皓, 等. 基于绝对节点坐标法的变截面梁动力学建模与运动变形分析. 机械工程学报, 2014,50(17):38-45 (Zhao Chunzhang, Yu Haidong, Wang Hao, et al. Dynamic modeling and kinematic behavior of variable cross-section beam based on the absolute nodal coordinate formulation. Journal of Mechanical Engineering, 2014,50(17):38-45 (in Chinese))
[26] 吴吉, 章定国, 黎亮, 等. 带集中质量的旋转柔性曲梁动力学特性分析. 力学学报, 2019,51(4):1134-1147 (Wu Ji, Zhang Dingguo, Li Liang, et al. Dynamic characteristics analysis of a rotating flexible curved beam with a concentrated mass. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1134-1147 (in Chinese))
[27] 张大羽, 罗建军, 郑银环, 等. 基于旋转场曲率的二维剪切梁单元建模. 物理学报, 2017,66(11):114501 (Zhang Dayu, Luo Jianjun, Zheng Yinhuan, et al. Analysis of planar shear deformable beam using rotation field curvature formulation. Acta Physica Sinica, 2017,66(11):114501 (in Chinese))
[28] 兰朋, 崔雅琦, 於祖庆. 完备化 ANCF 薄板单元及在钢板弹簧动力学建模中的应用. 力学学报, 2018,50(5):1156-1167 (Lan Peng, Cui Yaqi, Yu Zuqing. The completed form of elastic model for ANCF thin plate element and its application on dynamic modeling of the leaf spring. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1156-1167 (in Chinese))
[29] 过佳雯, 魏承, 谭春林, 等. 含芯拧绞绳非线性弯曲动力学特性分析与研究. 力学学报, 2018,50(2):373-384 (Guo Jiawen, Wei Cheng, Tan Chunlin, et al. Analysis of the cored stranded wire rope on the nonlinear bending dynamic characteristics. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):373-384 (in Chinese))
[30] 范纪华, 章定国, 谌宏. 基于绝对节点坐标法的弹性线方法研究. 力学学报, 2019,51(5):1455-1465 (Fan Jihua, Zhang Dingguo, Shen Hong. Research on elastic line method based on absolute nodal coordinate method. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(5):1455-1465 (in Chinese))
[31] Shabana AA. ANCF consistent rotation-based finite element formulation. ASME Journal of Computational and Nonlinear Dynamics, 2016,11:014502 [32] Zheng YH, Shabana AA. A two-dimensional shear deformable ANCF consistent rotation-based formulation beam element. Nonlinear Dynamics, 2017,87(2):1031-1043 [33] Gerstmayr J, Matikainen MK, Mikkola AM. A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody System Dynamics, 2008,20(359):359-384 [34] Hurskainen VA, Matikainen MK, Wang J, et al. A planar beam finite-element formulation with individually interpolated shear deformation. ASME Journal of Computational and Nonlinear Dynamics, 2016,12, 041007 [35] Schwab AL, Meijaard JP. Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation// Proceedings of the IDETC/CIE, ASME, Long Beach, New York, 2005, Paper No. DETC2005-85104 [36] Patel M, Shabana AA. Locking alleviation in the large displacement analysis of beam elements: The strain split method. Acta Mechanica, 2018,229(7):2923-2946 [37] Omar MA, Shabana AA. A two-dimensional shear deformable beam for large rotation and deformation problems. Journal of Sound and Vibration, 2001,243(3):565-576 [38] Bonet J, Wood RD. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge: Cambridge University Press, 1997 [39] Orzechowski G, Shabana AA. Analysis of warping deformation modes using higher-order ANCF beam element. Journal of Sound and Vibration, 2016,363, 428-445 [40] LS-DYNA, LS-DYNA?Keyword User's Manual-LSTC, 2018 [41] Hussein BA, Sugiyama H, Shabana AA. Coupled deformation modes in the large deformation finite element analysis: problem definition. ASME Journal of Computational and Nonlinear Dynamics, 2007,2(2):146-154 [42] 李文雄, 马海涛. 基于映射的高精度混合平面曲梁单元. 科学技术与工程, 2014,14(23):1671-1815 (Li Wenxiong, Ma Haitao. High precision mixed curved plane beam elements based on mapping. Science Technology and Engineering, 2014,14(23):1671-1815 (in Chinese))
[43] Gerstmayr J, Shabana AA. Efficient integration of the elastic forces and thin three-dimensional beam elements in the absolute nodal coordinate formulation// ECCOMAS Thematic Conference, Madrid, Spain, 21-24 June 2005 [44] Pappalardo CM, Wallin M, Shabana AA. A new ANCF/CRBF fully parameterized plate finite element. ASME Journal of Computational and Nonlinear Dynamics, 2017,12:031008 [45] Kulkarni S, Shabana AA. Spatial ANCF/CRBF beam elements, Acta Mechanica, 2019,230:929-952 [46] 汤惠颖, 张志娟, 刘铖, 等. 两类基于局部标架梁单元的闭锁缓解方法. 力学学报, 2021,53(2):482-495 (Tang Huiying, Zhang Zhijuan, Liu Cheng, et al. Locking alleviation techniques of two types of beam elements based on the local frame formulation. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(2):482-495 (in Chinese))
[47] 刘铖, 胡海岩. 基于李群局部标架的多柔体系统动力学建模与计算. 力学学报, 2021,53(1):213-233 (Liu Cheng, Hu Haiyan. Dynamic modeling and computation for flexible multibody systems based on the local frame of Lie group. Chinese Journal of Theoretical and Applied Mechanics, 2021,53(1):213-233 (in Chinese))
[48] Nachbagauer K, Gruber P, Gersmayr J. A 3D shear deformable finite element based on the absolute nodal coordinate formulation. Multibody System Dynamics, 2013,28:77-96 [49] Ebel H, Matikainen MK, Hurskainen VV, et al. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dynamics, 2017,88(2):1075-1091 [50] Tang YX, Hu HY, Tian Q. A condensed algorithm for adaptive component mode synthesis of viscoelastic flexible multibody dynamics. International Journal for Numerical Methods in Engineering, 2020,122(2):609-637 [51] Shabana AA, Xu LM. Rotation-based finite elements: reference-configuration geometry and motion description. Acta Mechanica Sinica, 2021,37(1):105-126 [52] Shabana AA. Geometrically accurate infinitesimal-rotation spatial finite elements. Proceedings of the Institution of Mechanical Engineers, Part K$:$ Journal of Multi-body Dynamics, 2018,232(1):182-187 [53] 孙加亮, 田强, 胡海岩. 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586 (Sun Jialiang, Tian Qiang, Hu Haiyan. Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
[54] 郭祥, 靳艳飞, 田强. 随机空间柔性多体系统动力学分析. 力学学报, 2020,52(6):1730-1742 (Guo Xiang, Jin Yanfei, Tian Qiang. Dynamics analysis of stochastic spatial flexible multibody system. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(6):1730-1742 (in Chinese))
[55] 李海泉, 梁建勋, 吴爽, 等. 空间机械臂柔性捕获机构建模与实验研究. 力学学报, 2020,52(5):1465-1474 (Li Haiquan, Liang Jianxun, Wu Shuang, et al. Dynamics modeling and experiment of a flexible capturing mechanism in a space manipulator. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(5):1465-1474 (in Chinese))
-
期刊类型引用(3)
1. 周川,赵春花,独亚平,郭嘉辉. 一种新型基于共用系数的二维ANCF高阶梁单元. 农业装备与车辆工程. 2023(02): 101-104 . 百度学术
2. 郭嘉辉,赵春花,独亚平,周川. 一种面向非线性材料的二维高阶ANCF梁单元. 农业装备与车辆工程. 2022(11): 86-89 . 百度学术
3. 周川,赵春花,独亚平,郭嘉辉. 绝对节点坐标梁单元弹性力建模及模态仿真的常见方法对比研究. 上海工程技术大学学报. 2022(02): 196-204 . 百度学术
其他类型引用(4)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 7