PORE-SCALE LATTICE BOLTZMANN MODELING OF SOIL WATER DISTRIBUTION
-
摘要: 土壤水控制着陆地生态系统几乎所有的物理和生物化学过程,准确描述土壤中水的分布与运动状态对人类发展和生态环境保护均有重要意义.土壤水分布不仅与孔隙结构有关, 而且受土壤固相表面润湿性的影响.一般对土壤水分布都是从宏观尺度进行描述,但土壤中的物理及生化过程都发生在孔隙中, 从孔隙尺度分析土壤水的分布规律,有助于更准确地理解土壤中的各种宏观现象.本文通过X射线扫描成像技术获取两个土样的三维孔隙结构,并采用改进的Shan-Chen格子玻尔兹曼模型,模拟了在不同润湿性条件下两个土样中孔隙水分布,分析了接触角对孔隙水分布的影响, 结果表明:接触角较大时,孔隙直径对液态水和水蒸气分布影响较小, 随着接触角减小,孔隙直径对液态水和水蒸气的分布影响增大;接触角对液、气、固之间的界面面积以及流体输运通道直径也有较大影响,液体输运通道直径随接触角减小而变小, 气体输运通道直径则随接触角的减小先增大,后减小; 土壤中液态水密度随接触角变化很小,但水蒸气密度随接触角减小而显著降低; 接触角较大时,饱和度对水蒸气密度无明显影响, 接触角较小时,饱和度的增大会显著提高水蒸气的密度.Abstract: Water in soil controls almost all physical and biogeochemical processes in terrestrial ecosystems and correctly describing its distribution and flow is critical in human development and ecological environment protection. Water distribution at pore scale is modulated by a multitude of abiotic and biotic factors such as the exudates secreted by plant roots and microbes, which could alter soil wettability and water surface tension. The combined impact of all these factors can be described by a single parameter, the contact angle. Practical studies on soil water distribution normally focus on large scale using continuum approaches by volumetrically averaging the microscopic processes out, but it is the physical and biochemical processes occurring in the pores that underpin the emerging phenomena at large scales. Studying the microscopic mechanisms underlying the microscopic water distribution is hence essential to improving the understanding of macroscopic phenomena. Since it is difficult to observe the water distribution at pore-scale due to the complexity of pores structure and the opaque nature of the soils, pore-scale modelling in combination with tomography has been increasingly used to bridge this gap. In this paper, we numerically investigated how a change in the contact angle reshaped water distribution using the Lattice Boltzmann model and X-ray computed tomography. Two soils with contrasting structures were acquired using X-ray computed tomography and they were then segmented to binary images consisting of pore and solid voxels. Water distribution in pore spaces of the soils was assumed to be controlled by capillary force and was simulated using a modified two-phase lattice Boltzmann model. The results show that with the contact angle increasing, the impact of the pore diameter on water distribution in both soils waned, and that a change in the contact angle also led to a change in the channel diameter for fluid flow and interfacial areas between liquid, solid and gas. It was found that as the contact angle decreased, the channel diameter for the liquid decreased while that for the gas increased first followed by a decline. The density of the liquid water was independent of the contact angle, but the density of the vapor decreased significantly as the contact angle increased. The effects of saturation on density of the vapor also increased as the contact angle decreased.
-
Keywords:
- lattice Boltzmann /
- wettability /
- contact angle /
- pore-scale modelling /
- porous media
-
-
[1] Bacq-Labreuil A, Crawford J, Mooney SJ. et al. Cover crop species have contrasting influence upon soil structural genesis and microbial community phenotype. Scientific Reports, 2019,9(1):7473 [2] Kravchenko AN, Guber AK, Razavi BS. et al. Microbial spatial footprint as a driver of soil carbon stabilization. Nature Communications, 2019,10(1):3121 [3] Nam JH, Kaviany M. Effective diffusivity and water-saturation distribution in single-and two-layer PEMFC diffusion medium. International Journal of Heat and Mass Transfer, 2003,46(24):4595-4611 [4] 周启友, 岛田纯. 土壤水空间分布结构的时间稳定性. 土壤学报, 2003,40(5):683-690 (Zhou Qiyou, Shimada J. Temporal stability of the spatial distribution pattern of soil water. Acta Pedologica Sinica, 2003,40(5):683-690 (in Chinese))
[5] 张常亮, 李萍, 李同录 等. 黄土中降雨入渗规律的现场监测研究. 水利学报, 2014,45(6):728-734 (Zhang Changliang, Li Ping, Li Tonglu, et al. In-situ boservation on rainfall infiltration in loess. Journal of Hydraulic Engineering, 2014,45(6):728-734 (in Chinese))
[6] 杜娟, 刘淑娟, 徐先英 等. 内陆沙区丘间地土壤水分时空变化分析. 中国农学通报, 2014,30(31):9-13 (Du Juan, Liu Shujuan, Xu Xianying, et al. The temporal and spatial variation analysis of soil moisture of interdune lowland in inland sandy areas. Chinese Agricultural Science Bulletin, 2014,30(31):9-13(in Chinese))
[7] 雷志栋, 胡和平, 杨诗秀. 土壤水研究进展与评述. 水科学进展, 1999,10(3):311-318 (Lei Zhidong, Hu Heping, Yang Shixiu. A review of soil water research. Advances in Water Science. 1999,10(3):311-318(in Chinese))
[8] Darcy H. Les Fontaines Publiques de la Ville de Dijon: Exposition et Application. Victor Dalmont, 1856 [9] Buckingham E. Studies on the Movement of Soil Moisture. Bull. 38. USDA, Bureau of Soils, Washington, DC, 1907 [10] Richards LA. Capillary conduction of liquids through porous mediums. Physics, 1931,1(5):318-333 [11] Brooks R, Corey T. Hydraulic properties of porous media. Hydrology Papers (Colorado State University), 1964,24:37 [12] Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980,44(5):892-898 [13] Arya LM, Paris JF. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Science Society of America Journal, 1981,45(6):1023-1030 [14] Schaap MG, Leij FJ. Using neural networks to predict soil water retention and soil hydraulic conductivity. Soil and Tillage Research, 1998,47(1-2):37-42 [15] 邵明安, 王全九, Robert H. 推求土壤水分运动参数的简单入渗法I. 理论分析. 土壤学报, 2000,37(1):1-8 (Shao Mingan, Wang Quanjiu, Robert H. A simple infiltration method for estimating soil hydraulic properties of unsaturated soils I. theoretical analysis. Acta Pedologica Sinica. 2000,37(01):1-8 (in Chinese))
[16] 邵明安, 王全九, Robert H. 推求土壤水分运动参数的简单入渗法II. 实验验证. 土壤学报, 2000,37(2):217-224 (Shao Mingan, Wang Quanjiu, Robert H. A simple infiltration method for estimating soil hydraulic properties of unsaturated soils II. experimental results. Acta Pedologica Sinica. 2000,37(2):217-224 (in Chinese))
[17] Jin T, Cai X, Chen Y. et al. A fractal-based model for soil water characteristic curve over entire range of water content. Capillarity, 2019,2(4):66-75 [18] Kovscek A, Wong H, Radke C. A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE Journal, 1993,39(6):1072-1085 [19] Fatt I. The network model of porous media 1. Capillary pressure characteristics. Transactions of the American Institute of Mining and Metallurgical Engineers, 1956,207(7):144-159 [20] Bijeljic B, Blunt MJ. Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resources Research, 2006,42(1):5 [21] Li L, Peters CA, Celia MA. Upscaling geochemical reaction rates using pore-scale network modeling. Advances in Water Resources, 2006,29(9):1351-1370 [22] Ebrahimi A, Or D. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model. Global Change Biology, 2016,22(9):3141-3156 [23] Hussain R, Mitchell J, Hammond PS. et al. Monitoring water transport in sandstone using flow propagators: A quantitative comparison of nuclear magnetic resonance measurement with lattice Boltzmann and pore network simulations. Advances in Water Resources, 2013,60:64-74 [24] Ostadi H, Rama P, Liu Y. et al. 3D reconstruction of a gas diffusion layer and a microporous layer. Journal of Membrane Science, 2010,351(1-2):69-74 [25] Borges JAR, Pires LF, Cássaro FAM. et al. X-ray microtomography analysis of representative elementary volume (REV) of soil morphological and geometrical properties. Soil and Tillage Research, 2018,182:112-122 [26] Cnudde V, Boone MN. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 2013,123(4):1-17 [27] Ahrenholz B, T?lke J, Krafczyk M. Lattice-Boltzmann simulations in reconstructed parametrized porous media. International Journal of Computational Fluid Dynamics, 2006,20(6):369-377 [28] Zhang XX, Crawford JW, Young IM. A Lattice Boltzmann model for simulating water flow at pore scale in unsaturated soils. Journal of Hydrology, 2016,538:152-160 [29] Hu XY, Adams NA. A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 2006,213(2):844-861 [30] Jettestuen E, Helland JO, Prodanovi? M. A level set method for simulating capillary-controlled displacements at the pore scale with nonzero contact angles. Water Resources Research, 2013,49(8):4645-4661 [31] Raeini AQ, Blunt MJ, Bijeljic B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 2012,231(17):5653-5668 [32] Hu W, Liu G, Zhang X. A pore-scale model for simulating water flow in unsaturated soil. Microfluidics & Nanofluidics, 2018,22(7):71 [33] Golparvar A, Zhou Y, Wu K. et al. A comprehensive review of pore scale modeling methodologies for multiphase flow in porous media. Advances in Geo-Energy Research, 2018,2(4):418-440 [34] 李桥忠, 陈木凤, 李游 等. 浸没边界-简化热格子 Boltzmann 方法研究及其应用. 力学学报, 2019,51(2):392-404 (Li Qiaozhong, Chen Mufeng, Li You, et al. Immersed boundary-simplified thermal lattice Boltzmann method for fluid-structure interaction problem with heat transfer and its application. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(2):392-404 (in Chinese))
[35] 程志林, 宁正福, 曾彦 等. 格子Boltzmann方法模拟多孔介质惯性流的边界条件改进. 力学学报, 2019,51(1):124-134 (Cheng Zhilin, Ning Zhengfu, Zeng Yan, et al. A lattice Boltzmann simulation of fluid flow in porous media using a modified boundary condition. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(1):124-134 (in Chinese))
[36] 蔡文莱, 黄亚军, 刘伟阳 等. 柔性微粒介电泳分离过程的多尺度模拟. 力学学报, 2019,51(2):405-414 (Cai Wenlai, Huang Yajun, Liu Weiyang, et al. Multiscal simulation of the dielectrophoresis separation process of flexible microparticle. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(2):405-414 (in Chinese))
[37] 冯世亮, 周吕文, 吕守芹 等. 悬浮态上皮细胞粘附的力学-化学耦合模型及数值模拟. 力学学报, 2020,52(3):854-863 (Feng Shiliang, Zhou Lü wen, Lü Shouqin, et al. Mechanochemical coupling model and numerical simulation for cell-cell adhesion in suspended epithelial cells. Chinese Journal of Theoretical and Applied Mechanics. 2019,51(3):854-863 (in Chinese))
[38] Leclaire S, Reggio M, Trépanier JY. Progress and investigation on lattice Boltzmann modeling of multiple immiscible fluids or components with variable density and viscosity ratios. Journal of Computational Physics, 2013,246:318-342 [39] Yu Y, Liu H, Liang D. et al. A versatile lattice Boltzmann model for immiscible ternary fluid flows. Physics of Fluids, 2019,31(1):012108 [40] W?hrwag M, Semprebon C, Moqaddam AM. et al. Ternary free-energy entropic lattice Boltzmann model with a high density ratio. Physical Review Letters, 2018,120(23):234501 [41] Wang N, Semprebon C, Liu H. et al. Modelling double emulsion formation in planar flow-focusing microchannels. Journal of Fluid Mechanics, 2020,895:A22 [42] Qin F, Del Carro L, Moqaddam AM. et al. Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. Journal of Fluid Mechanics, 2019,866:33-60 [43] Deng H, Jiao K, Hou Y. et al. A lattice Boltzmann model for multi-component two-phase gas-liquid flow with realistic fluid properties. International Journal of Heat and Mass Transfer, 2019,128:536-549 [44] Nekoeian S, Goharrizi AS, Jamialahmadi M. et al. A novel Shan and Chen type Lattice Boltzmann two phase method to study the capillary pressure curves of an oil water pair in a porous media. Petroleum, 2018,4(3):347-357 [45] Rabbi SMF, Tighe MK, Flavel RJ. et al. Plant roots redesign the rhizosphere to alter the three-dimensional physical architecture and water dynamics. New Phytologist, 2018,219(2):542-550 [46] Williams AJ, Pagliai M, Stoops G. Physical and biological surface crusts and seals//Interpretation of Micromorphological Features of Soils and Regoliths, Elsevier, 2018: 539-574 [47] Bachmann J, Goebel M-O, Woche SK. Small-scale contact angle mapping on undisturbed soil surfaces. Journal of Hydrology and Hydromechanics, 2013,61(1):3-8 [48] Briant A, Wagner A, Yeomans J. Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Physical Review E, 2004,69(3):031602 [49] 张博. 液滴润湿行为与表面微纳结构关系的模拟研究. [博士论文]. 北京: 北京化工大学, 2016 (Zhang Bo. Theoretical study on the relationship between wetting behaviors of microdroplets and substrate microstructures. [PhD Thesis]. Beijing: Beijing University of Chemical Technology, 2016 (in Chinese))
[50] 方可宁, 单彦广, 袁俊杰. 不同润湿性表面液滴铺展及蒸发过程的 LBM 数值模拟. 新能源进展, 2019,7(4):346-353 (Fang Kening, Shan Yanguang, Yuan Junjie. LBM numerical simulation of droplet spreading and evaporation on surfaces with different wettability. Advances in New and Renewable Energy. 2019,7(4):346-353 (in Chinese))
[51] 胡梦丹, 张庆宇, 孙东科 等. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019,68(3):120-129 (Hu Mengdan, Zhang Qingyu, Sun Dongke, et al. Three-dimensional lattice Boltzmann modeling of droplet condensation on superhydrophobic nanostructured surfaces. Acta Physica Sinica. 2019,68(3):120-129 (in Chinese))
[52] Chen S, Doolen GD. Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics, 1998,30:329-364 [53] Yuan P, Schaefer L. Equations of state in a lattice Boltzmann model. Physics of Fluids, 2006,18(4):042101 [54] Shan X, He X. Discretization of the velocity space in the solution of the Boltzmann equation. Physical Review Letters, 1998,80(1):65 [55] Chen L, Kang Q, Mu Y. et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. International Journal of Heat and Mass Transfer, 2014,76:210-236 [56] Martys NS, Chen H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Physical Review E, 1996,53(1):743 [57] Shan X. Analysis and reduction of the spurious current in a class of multiphase lattice Boltzmann models. Physical Review E, 2006,73(4):047701 [58] Bacq-Labreuil A, Crawford J, Mooney SJ. et al. Effects of cropping systems upon the three-dimensional architecture of soil systems are modulated by texture. Geoderma, 2018,332:73-83 [59] Hu WL, Huang N, Zhang XX. Impact of saturation on mass transfer rate between mobile and immobile waters in solute transport within aggregated soils. Journal of Hydrology, 2014,519:3557-3565 [60] Madsen M, Zvirzdin D, Petersen S. et al. Soil water repellency within a burned pi?on--juniper woodland: Spatial distribution, severity, and ecohydrologic implications. Soil Science Society of America Journal, 2011,75(4):1543-1553 -
期刊类型引用(18)
1. 蔡琛芳,张隽研,沙心国,梁彬,袁湘江. 压缩拐角激波边界层干扰热流分布实验研究. 航天器环境工程. 2025(02): 167-173 . 百度学术
2. 郭同彪,张吉,李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究. 空天防御. 2024(02): 29-35 . 百度学术
3. 刘晓东,刘朋欣,李辰,孙东,袁先旭. 高焓激波/湍流边界层干扰直接数值模拟. 航空学报. 2023(13): 57-72 . 百度学术
4. 段俊亦,童福林,李新亮,刘洪伟. 压缩-膨胀湍流边界层平均摩阻分解. 航空学报. 2022(01): 71-82 . 百度学术
5. 时文,田野,郭明明,刘源,张辰琳,钟富宇,乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报. 2022(03): 612-621 . 本站查看
6. 吕金洲,李世超,张小庆,杨大伟,刘建霞,贺佳佳. 脉冲风洞天平-模型支撑一体化测力技术研究. 推进技术. 2022(10): 392-399 . 百度学术
7. 钟巍,贾雷明,王澍霏,田宙. 一类高效率高分辨率加映射的WENO格式及其在复杂流动问题数值模拟中的应用. 力学学报. 2022(11): 3010-3031 . 本站查看
8. 周林,沈毅,葛任伟. 可压缩流动脉动压力数值模拟求解器HFS研究. 装备环境工程. 2021(03): 23-28 . 百度学术
9. 韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 . 本站查看
10. Yuting HONG,Zhufei LI,Jiming YANG. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions. Chinese Journal of Aeronautics. 2021(05): 504-509 . 必应学术
11. 姚冰,郭锐. 高超音速激波边界层干扰Fluent软件数值模拟. 电脑编程技巧与维护. 2020(04): 68-69+76 . 百度学术
12. 周志超,许凌飞,任天荣,顾村锋. 基于GCV-FFT方法的超声速压缩拐角流场气动光学效应计算. 计算物理. 2020(03): 284-298 . 百度学术
13. 吴正园,莫凡,高振勋,蒋崇文,李椿萱. 湍流边界层与高温气体效应耦合的直接数值模拟. 空气动力学学报. 2020(06): 1111-1119+1128 . 百度学术
14. 李益文,王宇天,庞垒,肖良华,丁志文,段朋振. 进气道等离子体/磁流体流动控制研究进展. 力学学报. 2019(02): 311-321 . 本站查看
15. 童福林,周桂宇,周浩,张培红,李新亮. 激波/湍流边界层干扰物面剪切应力统计特性. 航空学报. 2019(05): 39-50 . 百度学术
16. 胡晨星,杨策. 采用不同黏性处理方法的宽无叶扩压器不稳定流动研究. 力学学报. 2019(06): 1775-1784 . 本站查看
17. 骆信,吴颂平. 改进的五阶WENO-Z+格式. 力学学报. 2019(06): 1927-1939 . 本站查看
18. 洪正,叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报. 2018(06): 1356-1367 . 本站查看
其他类型引用(9)
计量
- 文章访问数: 1059
- HTML全文浏览量: 212
- PDF下载量: 171
- 被引次数: 27