EI、Scopus 收录
中文核心期刊

含水合物沉积物的弹塑性本构模型

刘林, 姚仰平, 张旭辉, 鲁晓兵, 王淑云

刘林, 姚仰平, 张旭辉, 鲁晓兵, 王淑云. 含水合物沉积物的弹塑性本构模型[J]. 力学学报, 2020, 52(2): 556-566. DOI: 10.6052/0459-1879-19-184
引用本文: 刘林, 姚仰平, 张旭辉, 鲁晓兵, 王淑云. 含水合物沉积物的弹塑性本构模型[J]. 力学学报, 2020, 52(2): 556-566. DOI: 10.6052/0459-1879-19-184
Liu Lin, Yao Yangping, Zhang Xuhui, Lu Xiaobing, Wang Shuyun. AN ELASTOPLASTIC CONSTITUTIVE MODEL FOR GAS HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 556-566. DOI: 10.6052/0459-1879-19-184
Citation: Liu Lin, Yao Yangping, Zhang Xuhui, Lu Xiaobing, Wang Shuyun. AN ELASTOPLASTIC CONSTITUTIVE MODEL FOR GAS HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 556-566. DOI: 10.6052/0459-1879-19-184
刘林, 姚仰平, 张旭辉, 鲁晓兵, 王淑云. 含水合物沉积物的弹塑性本构模型[J]. 力学学报, 2020, 52(2): 556-566. CSTR: 32045.14.0459-1879-19-184
引用本文: 刘林, 姚仰平, 张旭辉, 鲁晓兵, 王淑云. 含水合物沉积物的弹塑性本构模型[J]. 力学学报, 2020, 52(2): 556-566. CSTR: 32045.14.0459-1879-19-184
Liu Lin, Yao Yangping, Zhang Xuhui, Lu Xiaobing, Wang Shuyun. AN ELASTOPLASTIC CONSTITUTIVE MODEL FOR GAS HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 556-566. CSTR: 32045.14.0459-1879-19-184
Citation: Liu Lin, Yao Yangping, Zhang Xuhui, Lu Xiaobing, Wang Shuyun. AN ELASTOPLASTIC CONSTITUTIVE MODEL FOR GAS HYDRATE-BEARING SEDIMENTS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 556-566. CSTR: 32045.14.0459-1879-19-184

含水合物沉积物的弹塑性本构模型

基金项目: 1)国家自然科学基金项目(11872365);中国地质调查局项目(DD20190221)
详细信息
    通讯作者:

    张旭辉

  • 中图分类号: TU432

AN ELASTOPLASTIC CONSTITUTIVE MODEL FOR GAS HYDRATE-BEARING SEDIMENTS

  • 摘要: 土的密度对其力学特性具有明显影响.水合物以一种固相赋存于沉积物的孔隙中,使得水合物的含量和其赋存形式都会影响含水合物沉积物(GHBS)的密度,因此在研究和描述含水合物沉积物的力学性质时应考虑水合物含量和赋存形式对其密度的影响.本文基于黏土和砂土统一的本构模型(CSUH模型),首先建立水合物体积分数与压硬性参量的关系式来反映水合物对沉积物压缩规律的影响.其次,为了合理考虑水合物含量和赋存形式对沉积物密度的影响,建立了可以描述有效初始孔隙的计算式,并将其引入到状态参量中来描述水合物对沉积物剪胀性和峰值强度的影响.最后,结合CSUH模型中水滴形屈服面,建立了一个含水合物沉积物的弹塑性本构模型.通过与室内试验结果比较,验证了该模型不仅能够合理地描述不同赋存形式、不同水合物含量下含水合物沉积物的应力应变关系,而且在描述具有相同赋存形式含水合物沉积物的力学特性时,不同的水合物含量只需采用一组参数.
    Abstract: The density is one of the most important factors for the mechanical behavior of soil. The content and occurrence modes of hydrates obviously affect the density of gas hydrate-bearing sediments (GHBS) because hydrates exist in the pore of sediment as solid phase. Therefore, it is necessary to consider the effect of the hydrate content and occurrences to describe the mechanical properties of hydrate sediments well. In this paper,based on the unified hardening model for clays and sands (CSUH model), the relation between the volume fraction of hydrate and the compressive hardness parameter is firstly established to reflect the influence of hydrate on the compressibility of sediments. Secondly, in order to consider the influence of hydrate content and occurrence modes on sediment density, we propose a formula to describe the effective initial void ratio, and it is then introduced into the state parameter to describe the influence of hydrate on dilatancy of sediment. Finally, combining the drop-shaped yield surface of the CSUH model, an elastoplastic constitutive model for GHBS is developed. Compared with the laboratory test results, it is verified that the model can reasonably describe the mechanical behaviors of GHBS containing hydrates with different occurrence modes and contents. For the same occurrence mode but different contents, the set of parameters is the same.
  • [1] 石要红, 张旭辉, 鲁晓兵 等. 南海水合物黏土沉积物力学特性试验模拟研究. 力学学报, 2015,47(3):521-528
    [1] ( Shi Yaohong, Zhang Xuhui, Lu Xiaobing , et al. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(3):521-528 (in Chinese))
    [2] 刘乐乐, 张旭辉, 刘昌玲 等. 含水合物沉积物力学性质三轴剪切试验与损伤统计分析. 力学学报, 2016,48(3):720-729
    [2] ( Liu Lele, Zhang Xuhui, Liu Changling , et al. Triaxial shear tests and statistical analyses of damage for methane hydrate-bearing sediments. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(3):720-729 (in Chinese))
    [3] 张旭辉, 鲁晓兵 . 一种新的海洋浅层水合物开采法——机械-热联合法. 力学学报, 2016,48(5):1238-1246
    [3] ( Zhang Xuhui, Lu Xiaobing . A new exploitation method for gas hydrate in shallow stratum: mechanical-thermal method. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(5):1238-1246 (in Chinese))
    [4] Yu F, Song YC, Liu WG , et al. Analyses of stress strain behavior and constitutive model of artificial methane hydrate. Journal of Petroleum Science and Engineering, 2011,77(2):183-188
    [5] Miyazaki K, Masui A, Sakamoto Y , et al. Triaxial compressive properties of artificial methane-hydrate bearing sediment. Journal of Geophysical Research, 2011,116(B6): doi: 10.1029/2010JB008049
    [6] 吴二林, 魏厚振, 颜荣涛 等. 考虑损伤的含天然气水合物沉积物本构模型. 岩石力学与工程学报, 2012,31(S1):3045-3050
    [6] ( Wu Erling, Wei Houzhen, Yan Rongtao , et al. Constitutive model for gas hydrate-bearing sediments considering damage. Chinese Journal of Rock Mechanics and Engineering, 2012,31(S1):3045-3050 (in Chinese))
    [7] 颜荣涛, 梁维云, 韦昌富 等. 考虑赋存模式影响的含水合物沉积物的本构模型研究. 岩土力学, 2017,38(1):10-18 (in Chinese))
    [7] ( Yan Rongtao, Liang Weiyun, Wei Changfu , et al. A constitutive model for gas hydrate-bearing sediments considering hydrate occurring habits. Rock and Soil Mechanics, 2017,38(1):10-18 (in Chinese))
    [8] Kimoto S, Oka F, Masaya F . A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrates dissociation. Computers and Geotechnics, 2007,34(7):216-228
    [9] Klar A, Uchida S, Soga K , et al. Explicitly coupled thermal flow mechanical formulation for gas-hydrate sediments. SPE Journal, 2013,18(2):196-206
    [10] Uchida U, Soga K, Yamamoto K . Critical state soil constitutive model for methane hydrate soil. Journal of Geophysical Research, 2012,117:B03209
    [11] 蒋明镜, 刘俊, 周卫 等. 一个深海能源土弹塑性本构模型. 岩土力学, 2018,39(4):1153-1158
    [11] ( Jiang Mingjing, Liu Jun, Zhou Wei , et al. An elasto-plastic constitutive model for methane hydrate bearing sediments. Rock and Mechanics, 2018,39(4):1153-1158 (in Chinese))
    [12] 杨期君, 赵春风 . 含气水合物沉积物弹塑性损伤本构模型探讨. 岩土力学, 2014,35(4):991-997
    [12] ( Yang Qijun, Zhao Chunfeng . A constitutive model coupling elastoplasticity and damage for methane hydrate-bearing sediments. Rock and Soil Mechanics, 2014,35(4):991-997 (in Chinese))
    [13] 袁庆盟, 孔亮, 刘锐明 等. 考虑深海能源土结构性的统一硬化模型. 科学技术与工程, 2018,18(32):64-70
    [13] ( Yuan Qingmeng, Kong Liang, Liu Ruiming , et al. Unified hardening model for gas hydrate bearing sediments considering structure. Science Technology and Engineering, 2018,18(32):64-70 (in Chinese))
    [14] 邹远晶, 韦昌富, 陈合龙 等. 基于扰动状态概念的含水合物土弹塑性模型. 岩土力学, 2019,40(7):1-9
    [14] ( Zou Yuanjing, Wei Changfu, Chen Helong , et al. Elastic-plastic model for gas-hydrate soils based on disturbed state concept. Rock and Mechanics, 2019,40(7):1-9 (in Chinese))
    [15] 姚仰平, 刘林, 罗汀 . 砂土的UH模型. 岩土工程学报, 2016,38(12):2147-2153
    [15] ( Yao Yangping, Liu Lin, Luo Ting . UH model for sands. Chinese Journal of Geotechnical Engineering, 2016,38(12):2147-2153 (in Chinese))
    [16] Yao YP, Liu L, Luo T . A constitutive model for granular soils. Science China Technological Sciences, 2018,61(10):1546-1555
    [17] 罗汀, 刘林, 姚仰平 . 考虑颗粒破碎的砂土临界状态特性描述. 岩土工程学报, 2017,39(4):592-600
    [17] ( Luo Ting, Liu Lin, Yao Yangping . Description of critical state for sands considering particle crushing. Chinese Journal of Geotechnical Engineering, 2017,39(4):592-600 (in Chinese))
    [18] Yao YP, Liu L, Luo T , et al. Unified hardening (UH) model for clays and sands. Computers and Geotechnics, 2019,110:326-343
    [19] Yao YP, Hou W, Zhou AN . UH model: Three-dimensional unified hardening model for overconsolidated clays. Géotechnique, 2009,59(5):451-469
    [20] Yao YP, Gao ZW, Zhao JD , et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope. J Geotech Geoenviron Eng, 2012,138(7):860-868
    [21] 姚仰平 . UH 模型系列研究. 岩土工程学报, 2015,37(2):193-217
    [21] ( Yao Yangping . Advanced UH models for soils. Chinese Journal of Geotechnical Engineering, 2015,37(2):193-217 (in Chinese))
    [22] Tan BB . Geotechnical characteristic of sediments from Hydrate Ridge, Cascadia continental margin. [Master Thesis]. Massachusetts Institute of Technology, 2004
    [23] Roberts JE, Souza JM . The compressibility of sand. Proc, Am. Soc for Testing Mat, 1958,58:1269-1277
    [24] Hendron A . The behavior of sand in one-dimensional compression. [PhD Thesis]. Urbana: University of Illinois, 1963
    [25] Hagerty MM, Hite DR, Ullrich CR , et al. One-dimensional high-pressure compression of granular media. J Geotech Engrg, ASCE, 1993,119(1):1-18
    [26] Yamamuro JA, Bopp PA, Lade PV . One-dimensional compression of sands at high pressures. J Geotech Engrg, ASCE, 1996,122(2):147-154
    [27] Yu FW . Experimental study on particle breakage under high pressure. [PhD Thesis]. Tokyo: University of Tokyo, 2014
    [28] Masui A, Haneda H, Ogata Y , et al. The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments// Proceedings of the 5 th Int. Conf. on Gas Hydrates, June 13-16, 2005, Trondheim, Norway
    [29] Soga K, Lee S, Ng M , et al. Characterization and engineering properties of methane hydrate soils. Characterization and Engineering Properties of Natural Soils. London: Taylor and Francis, 2006: 2591-2642
    [30] Been K, Jefferies MG . A state parameter for sands. Géotechnique, 1985,35(2):99-112
    [31] 刘林 . 粘土和粒状土统一的UH模型. [博士论文]. 北京:北京航空航天大学, 2018
    [31] ( Liu Lin . UH model for clays and granular soils. [PhD Thesis]. Beijing: Beihang University, 2018 (in Chinese))
    [32] 李广信 . 高等土力学. 北京: 清华大学出版社, 2004: 41-42
    [32] ( Li Guangxin . Advanced Soil Mechanics. Beijing: Tsinghua University Press, 2004: 41-42(in Chinese))
    [33] Zhang XH, Lin J, Lu XB , et al. A hypoplastic model for gas hydrate-bearing sandy sediments. Int J Numer Anal Methods Geomech, 2018,42:931-942
  • 期刊类型引用(10)

    1. 孙宏鑫,张安,王栋,马慧龙. 循环荷载作用下含水合物粉细砂的残余变形. 中国海洋大学学报(自然科学版). 2024(03): 126-132 . 百度学术
    2. 姜凯松,戚承志,卢春生,王泽帆,张宇嘉. 考虑深海能源土结构性影响的弹塑性本构模型. 岩土工程技术. 2024(03): 263-272 . 百度学术
    3. 颜梦秋,黄永茂,顾翔,颜荣涛,杨德欢,于海浩,徐玉博,陆地. 含水合物土一维压缩特性. 桂林理工大学学报. 2024(02): 239-247 . 百度学术
    4. 胡艳. 基于生态环境保护的沉积物环境污染自动监测系统研究. 能源与环保. 2023(08): 67-72+79 . 百度学术
    5. 李辉,张旭辉,陆程,谢鹏飞,鲁晓兵. 压缩加载条件下含水合物沉积物蠕变特性分析. 海洋地质与第四纪地质. 2023(06): 217-225 . 百度学术
    6. 刘燕晶,王路君,朱斌,陈云敏. 考虑填充和黏结作用的含水合物沉积物弹塑性本构模型. 岩土力学. 2022(09): 2471-2482 . 百度学术
    7. 赵亚鹏,刘乐乐,孔亮,桑松魁,王兴,刘佳棋. 黏质及砂质能源土统一的弹塑性本构模型. 岩石力学与工程学报. 2022(12): 2579-2591 . 百度学术
    8. 姜宗林,刘俊丽,苑朝凯,陈海璇,陆夕云. 超常环境力学领域研究新进展—–《力学学报》极端力学专题研讨会综述报告. 力学学报. 2021(02): 589-599 . 本站查看
    9. 李淑霞,郭尚平,陈月明,张宁涛,武迪迪. 天然气水合物开发多物理场特征及耦合渗流研究进展与建议. 力学学报. 2020(03): 828-842 . 本站查看
    10. 董林,廖华林,李彦龙,刘昌岭. 天然气水合物沉积物力学性质测试与评价. 海洋地质前沿. 2020(09): 34-43 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1669
  • HTML全文浏览量:  265
  • PDF下载量:  167
  • 被引次数: 25
出版历程
  • 收稿日期:  2019-07-13
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回