EI、Scopus 收录
中文核心期刊

压应力对压剪裂纹扩展的影响研究

王勃, 张阳博, 左宏, 王厚锦

王勃, 张阳博, 左宏, 王厚锦. 压应力对压剪裂纹扩展的影响研究[J]. 力学学报, 2019, 51(3): 845-851. DOI: 10.6052/0459-1879-18-369
引用本文: 王勃, 张阳博, 左宏, 王厚锦. 压应力对压剪裂纹扩展的影响研究[J]. 力学学报, 2019, 51(3): 845-851. DOI: 10.6052/0459-1879-18-369
Bo Wang, Yangbo Zhang, Hong Zuo, Houjin Wang. STUDY ON THE INFLUENCE OF COMPRESSIVE STRESS ON THE COMPRESSION SHEAR CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 845-851. DOI: 10.6052/0459-1879-18-369
Citation: Bo Wang, Yangbo Zhang, Hong Zuo, Houjin Wang. STUDY ON THE INFLUENCE OF COMPRESSIVE STRESS ON THE COMPRESSION SHEAR CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 845-851. DOI: 10.6052/0459-1879-18-369
王勃, 张阳博, 左宏, 王厚锦. 压应力对压剪裂纹扩展的影响研究[J]. 力学学报, 2019, 51(3): 845-851. CSTR: 32045.14.0459-1879-18-369
引用本文: 王勃, 张阳博, 左宏, 王厚锦. 压应力对压剪裂纹扩展的影响研究[J]. 力学学报, 2019, 51(3): 845-851. CSTR: 32045.14.0459-1879-18-369
Bo Wang, Yangbo Zhang, Hong Zuo, Houjin Wang. STUDY ON THE INFLUENCE OF COMPRESSIVE STRESS ON THE COMPRESSION SHEAR CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 845-851. CSTR: 32045.14.0459-1879-18-369
Citation: Bo Wang, Yangbo Zhang, Hong Zuo, Houjin Wang. STUDY ON THE INFLUENCE OF COMPRESSIVE STRESS ON THE COMPRESSION SHEAR CRACK PROPAGATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 845-851. CSTR: 32045.14.0459-1879-18-369

压应力对压剪裂纹扩展的影响研究

基金项目: 1) 国家自然科学基金资助项目(11572235).
详细信息
    通讯作者:

    左宏

  • 中图分类号: O344.3;

STUDY ON THE INFLUENCE OF COMPRESSIVE STRESS ON THE COMPRESSION SHEAR CRACK PROPAGATION

  • 摘要: 本文针对压剪裂纹的启裂及扩展问题,研究了脆性材料中裂纹面压应力变化对其扩展的影响规律.借助双轴加载试验机可自由调节两个轴位移和力的优势,设计了一种单边对称双裂纹压剪试样.试验中,施加裂纹面压应力至不同的预设值后,使剪应力单调增大直至裂纹启裂及扩展,得到不同预设压应力下压剪裂纹启裂及扩展规律. 随着预设压应力增大,启裂角增大,裂纹扩展路径与初始裂纹的偏角也增大.但随着压应力增大,启裂角增大至一定值后趋于稳定,实验发现,依据裂纹是否闭合,压应力对压剪裂纹扩展的作用大致可分为两个阶段:闭合前,压应力对裂纹启裂载荷及启裂角、扩展路径均有影响,预设压应力增大,裂纹启裂载荷增大、启裂角增大,扩展路径愈来愈偏离初始裂纹方向;闭合后,压应力虽然增大,启裂角和临界压剪应力比始终恒定,压应力对临界剪力和扩展路径存在一定影响.研究表明,裂纹启裂角与启裂时的压剪应力比存在一定的对应关系.启裂时的压剪应力比增大,启裂角增大,启裂时的压剪应力比恒定,启裂角不变.
    Abstract: In this paper, the problem of crack initiation and propagation under compression shear load is investigated experimentally. The influence of far-field compression stress perpendicular to the crack surface on the initiation and propagation of the crack in brittle material is emphasizeded. With the help of the two-axis loading test machine, the two shaft displacements and forces can be adjusted freely during loading. Thus a kind of single-edge symmetric double-crack compression-shear specimen is designed. During the loading, the compression stress stoped as it reaches a series of preset values, while the shear stress increases monotonically till to the crack initiation and propagation. Then the crack initiation and propagation law of compression shear crack under different preset compression stresses can be obtained. It can be find from the test that as the compression stresses relatively smaller, along with the preset compression stress increases, the crack initiation angle increases and the deviation of crack propagation path from the initial crack direction changes severely. As the compression stress reached a definated value, the initiation angle is not changed. It can be find from the test sample that the two crack surfaces are contacted after this definated value of compression stress. The results show that the effect of compression stress on the crack propagation can be divided into two stages according to whether the crack surface contacted or not. Before the crack closed, the influence of compression stress on crack initiation load, crack initiation angle and propagation path increases,when the preset compression stress increases the crack initiation load and the crack initiation angle increase, and the propagation path deviates from the initial crack direction severely. After the crack closed, although the compression stress increases, the crack initiation angle and the critical compression shear stress ratio are keep unchanged. In addition, there existes a certain correspondence between the crack initiation angle and the compression-shear stress ratio at the time of crack initiation. When the ratio of compression-shear stress at the crack initiation increases, the crack initiation angle increases, and vice versa.
  • [1] Nesládek M, ?paniel M, Jurenka J, et al.Fretting fatigue -- Experimental and numerical approaches. International Journal of Fatigue, 2012, 44(44): 61-73
    [2] 孙见君, 嵇正波, 马晨波.粗糙表面接触力学问题的重新分析. 力学学报, 2018, 50(1): 68-77
    [2] (Sun Jianjun, Ji Zhengbo, Ma Chenbo.Reanalysis of the contact mechanics for rough surfaces. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 68-77 (in Chinese))
    [3] 李欣,杨建伟.微动疲劳损伤机理数值分析与实验研究.科学技术与工程, 2017, 17(30): 51-55
    [3] (Li Xin, Yang Jianwei.Numerical analysis and experimental research on the mechanism of fretting fatigue damage. Science Technology and Engineering, 2017, 17(30): 51-55 (in Chinese))
    [4] 俞树荣,白利蓉,景鹏飞等.摩擦配副材料对TC4钛合金微动磨损行为的影响.润滑与密封, 2018, 43(8): 14-18
    [4] (Yu Shurong, Bai Lirong, Jing Pengfei, et al.Effect of friction matching materials on fretting wear behavior of TC4 titanium alloy. Lubrication and Sealing, 2018, 43(8): 14-18 (in Chinese))
    [5] 蒋华臻,王保安,李正阳等. 车轮表面宏观形貌取向对高速轮轨水润滑黏着系数的影响. 力学学报, 2018, 50(1): 157-166
    [5] (Jiang Huazhen, Wang Baoan, Li Zhengyang, et al.Influence of macroscopic topography orientations of wheels on adhesion coefficient of high speed wheel/rail under water lubrication. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(1): 157-166 (in Chinese))
    [6] 江晓禹, 李孝滔, 李煦等. 轮轨高速滚动接触及钢轨疲劳裂纹扩展研究. 西南交通大学学报, 2016, 51(2): 274-281
    [6] (Jiang Xiaoyu, Li Xiaotao, Li Xu, et al.Research on high-speed rolling contact of wheel and rail and fatigue crack propagation of rail. Journal of SouthWest JiaoTong University, 2016, 51(2): 274-281 (in Chinese))
    [7] 郭立昌,杨斌,何成刚等.基于接触斑能量耗散轮轨磨损与损伤机制研究.西南交通大学学报, 2018(5): 1-5
    [7] (Guo Lichang, Yang Bin, He Chenggang, et al.Study on wear and damage mechanism of wheel and rail based on contact speckle energy dissipation. Journal of Southwest Jiaotong University, 2018(5): 1-5 (in Chinese))
    [8] Bobet A, Einstein HH.Fracture coalescence in rock-type materials under uniaxial and biaxial compression. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(7): 863-888
    [9] 康亚明,贾延,罗玉财.三轴压缩时岩石破裂面方位角理论值与实验值研究.西安建筑科技大学学报(自然科学版), 2017, 49(5): 665-670
    [9] (Kang Yaming, Jia Yan, Luo Yucai.Theoretical value and experimental value of azimuth angle of rock failure surface during triaxial compression. Journal of Xi'an University of Architecture & Technology( Natural Science Edition), 2017, 49(5): 665-670 (in Chinese))
    [10] 万征,秋仁东,郭金雪. 岩土的一种强度准则及其变换应力法. 力学学报, 2017, 49(3): 726-740
    [10] (Wan Zheng, Qiu Rendong, Guo Jinxue.A kind of strength and yield criterion for geomaterials and its Transformation stress method. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 726-740 (in Chinese))
    [11] Lee S, Ravichandran G.Crack initiation in brittle solids under multiaxial compression. Engineering Fracture Mechanics, 2003, 70(13): 1645-1658
    [12] 钟志彬, Hu Xiaozhi,邓荣贵等.含裂隙充填节理岩体的压剪断裂机制研究.岩石力学与工程学报, 2018, 37(S1): 3320-3331
    [12] (Zhong Zhibin, Hu Xiaozhi, Deng Ronggui, et al.Study on the mechanism of compression-shear fracture of jointed rock mass with fissure filling. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3320-3331 (in Chinese))
    [13] 李部, 黄润秋, 吴礼舟. 类岩石脆性材料非闭合裂纹的Ⅰ--Ⅱ压剪复合型断裂准则研究. 岩土工程学报, 2017, 39(4): 662-668
    [13] (Li Bu, Huang Runqiu, Wu Lizhou.Study on I-II compression-shear composite fracture criterion for non-closed cracks of rock-like brittle materials. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 662-668 (in Chinese))
    [14] Borrego LP, Antunes FV, Costa JM, et al.Mixed-mode fatigue crack growth behaviour in aluminium alloy. International Journal of Fatigue, 2006, 28(5-6): 618-626
    [15] 黄达,金华辉,黄润秋.拉剪应力状态下岩体裂隙扩展的断裂力学机制及物理模型试验. 岩土力学, 2011, 32(4): 997-1002
    [15] (Huang Da, Jin Huahui, Huang Runqiu.Fracture mechanics and physical model test of rock mass fracture propagation under tensile shear stress state. Rock and Soil Mechanics, 2011, 32(4): 997-1002 (in Chinese))
    [16] 张楚汉, 论岩石、混凝土离散$\!$-$\!$-$\!$接触$\!$-$\!$-$\!$断裂分析. 岩石力学与工程学报, 2008, 27(2): 217-235
    [16] (Zhang Chuhan.On discrete-contact-fracture analysis of rock and concrete. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 217-235 (in Chinese))
    [17] Bobet A.The initiation of secondary cracks in compression. Engineering Fracture Mechanics, 2000, 66(2): 187-219
    [18] Bobet A, Einstein HH. Numerical modeling of fracture coalescence in a model rock material. International Journal of Fracture, 1998, 92(3): 221-252 (32)
    [19] Shen B, Stephansson O, Einstein HH, et al.Coalescence of fractures under shear stresses in experiments. Journal of Geophysical Research Solid Earth, 1995, 100(B4): 5975-5990
    [20] 范文臣, 曹平, 张科. 不同压剪应力比作用下节理类岩石材料破坏模式的试验研究. 中南大学学报(自然科学版), 2015(3): 926-932
    [20] (Fan Wenchen, Cao Ping, Zhang Ke.Experimental study on failure modes of jointed rock materials under different compressive shear stress ratios. Journal of Central South University: Natural Science, 2015(3): 926-932 (in Chinese))
    [21] 许万忠,林杭,曹日红.基于数字散斑技术的压$\!$-$\!$-$\!$剪裂隙岩体破坏过程分析.长安大学学报(自然科学版), 2018, 38(2): 34-41
    [21] (Xu Wanzhong, Lin Hang, Cao Rihong.Analysis of failure process of compression-shear fracture rock mass based on digital speckle technique. Journal of Chang' an University( Natural Science Edition), 2018, 38(2): 34-41 (in Chinese))
    [22] Wang Z, Hou J, Wang C, et al.An implementation method of shear plane fracture of multi-crack rock under compression-shear loading. Electronic Journal of Geotechnical Engineering, 2016 (12): 4595-4602
    [23] Erdogan F, Sih GC.On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963, 85(4): 519-525
    [24] 赵艳华, 徐世烺. I-II复合型裂纹脆性断裂的最小$J_{2}$准则. 工程力学, 2002, 19(4): 94-98
    [24] (Zhao Yanhua, Xu Shilang.The minimum $J_2$ criterion for I-II composite crack brittle fracture. Engineering Mechanics, 2002, 19(4): 94-98 (in Chinese))
    [25] Sih GC.Energy-density concept in fracture mechanics. Engineering Fracture Mechanics, 1973, 5(4): 1037-1040
    [26] Nuismer RJ.An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 1975, 11(2): 245-250
    [27] 赵诒枢. 复合型裂纹扩展的应变能准则. 固体力学学报, 1987(1): 69-73
    [27] (Zhao Yishu.Strain energy criterion for composite crack propagation. Chinese Journal of Solid Mechanics, 1987(1): 69-73 (in Chinese))
    [28] 林拜松. 滑开型断裂的复合型脆断判据. 应用数学和力学, 1985, 6(11): 977-983
    [28] (Lin Baisong.The composite brittle fracture criterion of slip-type fracture. Applied Mathematics and Mechanics, 1985, 6(11): 977-983 (in Chinese))
    [29] 周家文, 徐卫亚, 石崇. 基于破坏准则的岩石压剪断裂判据研究. 岩石力学与工程学报, 2007, 26(6): 1194-1201
    [29] (Zhou Jiawen, Xu Weiya, Shi Chong.Research on rock compression shear fracture criterion based on failure criterion. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1194-1201 (in Chinese))
    [30] 李世愚. 岩石断裂力学导论(中国科学技术大学校友文库). 北京:科技大学出版社, 2010
    [30] (Li Shiyu.Introduction to Rock Fracture Mechanics (Chinese University of Science and Technology Alumni Library). Beijing: University of Science and Technology Press, 2010 (in Chinese))
  • 期刊类型引用(6)

    1. 黄鲛,陈婧旖,罗磊,李玉军,张毅,李斌. 基于数字图像技术的C/SiC复合材料拉伸行为与失效机制. 复合材料学报. 2022(05): 2387-2397 . 百度学术
    2. 刘明,侯冬杨,高诚辉. 利用维氏和玻氏压头表征半导体材料断裂韧性. 力学学报. 2021(02): 413-423 . 本站查看
    3. 王理想,文龙飞,肖桂仲,田荣. 非连续问题中单元分割的模板方法. 力学学报. 2021(03): 823-836 . 本站查看
    4. 李晓照,贾亚星,张骐烁,戚承志. 脆性岩石蠕变裂纹成核宏细观力学机理研究. 力学学报. 2021(04): 1059-1069 . 本站查看
    5. 邸士莹,程时清,白文鹏,魏操,汪洋,秦佳正. 致密油藏动态裂缝扩展机理及应用. 力学学报. 2021(08): 2141-2155 . 本站查看
    6. 曹明月,张启,吴建国,葛敬冉,梁军. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报. 2020(04): 1095-1105 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  1922
  • HTML全文浏览量:  298
  • PDF下载量:  314
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-11-05
  • 刊出日期:  2019-05-17

目录

    /

    返回文章
    返回