EI、Scopus 收录
中文核心期刊

基于改进的双向渐进结构优化法的应力约束拓扑优化

王选, 刘宏亮, 龙凯, 杨迪雄, 胡平

王选, 刘宏亮, 龙凯, 杨迪雄, 胡平. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2): 385-394. DOI: 10.6052/0459-1879-17-286
引用本文: 王选, 刘宏亮, 龙凯, 杨迪雄, 胡平. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2): 385-394. DOI: 10.6052/0459-1879-17-286
Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. DOI: 10.6052/0459-1879-17-286
Citation: Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. DOI: 10.6052/0459-1879-17-286
王选, 刘宏亮, 龙凯, 杨迪雄, 胡平. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2): 385-394. CSTR: 32045.14.0459-1879-17-286
引用本文: 王选, 刘宏亮, 龙凯, 杨迪雄, 胡平. 基于改进的双向渐进结构优化法的应力约束拓扑优化[J]. 力学学报, 2018, 50(2): 385-394. CSTR: 32045.14.0459-1879-17-286
Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. CSTR: 32045.14.0459-1879-17-286
Citation: Wang Xuan, Liu Hongliang, Long Kai, Yang Dixiong, Hu Ping. STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 385-394. CSTR: 32045.14.0459-1879-17-286

基于改进的双向渐进结构优化法的应力约束拓扑优化

基金项目: 国家自然科学基金(11272075, 11772079), 北京市自然科学基金(2182067)和中央高校基本科研业务费专项(2017MS077, 2018ZD09)资助项目.
详细信息
    作者简介:

    *通讯作者:杨迪雄,教授,主要研究方向:结构优化与建筑抗震减震. E-mail:yangdx@dlut.edu.cn

    通讯作者:

    杨迪雄

  • 中图分类号: O342,O346;

STRESS-CONSTRAINED TOPOLOGY OPTIMIZATION BASED ON IMPROVED BI-DIRECTIONAL EVOLUTIONARY OPTIMIZATION METHOD

  • 摘要: 工程结构设计时经常需要限制最大名义应力,以避免发生断裂或疲劳破坏,一个有效的策略是采用拓扑优化方法. 常规的双向渐进结构优化法(bi-evolutionary structural optimization, BESO)不能有效求解应力约束拓扑优化问题,为此本文提出一种改进的双向渐进结构优化方法,处理体积和应力约束下的最小柔顺性问题. 引入基于K-S函数的全局应力度量,以减小大量局部应力约束引起的计算代价. 采用拉格朗日乘子法将应力约束函数引入到目标函数,然后由二分法确定合适的拉格朗日乘子的值使得应力约束得到满足. 而且,详细推导了基于BESO方法的应力约束拓扑优化模型及其灵敏度列式,最后通过三个典型拓扑优化算例验证改进方法的有效性. 为展示考虑应力约束的优点,将应力约束设计与传统的基于刚度的设计进行了比较. 结果表明, 改进的BESO方法优化迭代过程稳健,获得了边界灰度单元很少的清晰的拓扑构型,并实现了有效降低应力集中效应的设计.
    Abstract: It is necessary to limit maximum nominal stress for engineering structural design generally, so as to avoid that the failure of fracture or fatigue occurs. Topology optimization approach is a feasible strategy. The conventional bi-evolutionary structural optimization (BESO) method cannot effectively address the topology optimization problem with stress constraint. To overcome this limitation, this paper suggests an improved BESO method for stress-constrained topology optimization, in which the minimum compliance design problem with volume and stress constraints is considered. A global stress measure based on the K-S function is introduced to reduce the computational cost associated with the local stress constraint. Meanwhile, the stress constraint function is added to the objective function by using the Lagrange multiplier method. Moreover, the appropriate value of the Lagrangian multiplier is then determined by a bisection method so that the stress constraint is satisfied. The model of BESO method for solving stress-constrained topology optimization and its sensitivity analysis are detailed. Finally, three typical topology optimization examples are performed to demonstrate the validity of the present method, in which the stress constrained designs are compared with the traditional stiffness based designs to illustrate the merit of considering stress constraint. The optimized results indicate that the improved BESO method, as a robust algorithm with stable iterative history, achieves an ambiguous topology with clearly defined boundaries, and realizes a design that effectively reduces stress concentration effect at the critical stress areas.
  • [1] Bendsoe MP, Kikuchi N.Generating optimal topologies in structural design using a homogenization method.Computer Methods in Applied Mechanics and Engineering, 1988, 71(1): 197-224
    [2] Bendsoe MP, Sigmund O.Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003
    [3] Xie YM, Steven GP.A simple evolutionary procedure for structural optimization.Computers and Structures, 1993, 49(3): 885-896
    [4] 隋允康, 叶红玲, 彭细荣等. 连续体结构拓扑优化应力约束凝聚化的ICM 方法. 力学学报, 2007, 23(4): 554-563
    [4] (Sui Yunkang, Ye Hongliang, Peng Xirong, et al.The ICM method for continuum structural topology optimization with condensation of stress constraints.Chinese Journal of Theoretical Applied Mechanics, 2007, 23(4): 554-563 (in Chinese))
    [5] Wang MY, Wang X, Guo DM.A level set method for structural topology optimization.Computer Methods in Applied Mechanics and Engineering, 2003, 192(1): 227-246
    [6] Guo X, Zhang WS, Zhong W.Doing topology optimization explicitly and geometrically—a new moving morphable components based framework.Journal of Applied Mechanics, 2014, 81(6): 081009
    [7] Sigmund O, Maute K.Topology optimization approaches.Structural and Multidisciplinary Optimization, 2013, 48(4): 1031-1055
    [8] 谢亿民, 黄晓东, 左志豪等. 渐进结构优化法 (ESO) 和双向渐进结构优化法 (BESO) 的近期发展. 力学进展, 2011, 41(4): 462-471
    [8] (Xie Yiming, Huang Xiaodong, Zuo Zhihao, et al.Recent developments of evolutionary structural optimization (ESO) and bidirectional evolutionary structural optimization (BESO) methods.Advances in Mechanics, 2011, 41(4): 462-471 (in Chinese))
    [9] 张卫红, 郭文杰, 朱继宏. 部件级多组件结构系统的整体式拓扑布局优化. 航空学报, 2015, 36(6): 2662-2669
    [9] (Zhang Weihong, Guo Wenjie, Zhu Jihong.Integrated layout and topology optimization design of multi-component systems with assembly units.Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 2662-2669 (in Chinese))
    [10] 龙凯, 王选, 韩丹. 基于多相材料的稳态热传导结构轻量化设计. 力学学报, 2017, 49(1): 359-366
    [10] (Long Kai, Wang Xuan, Han Dan.Structural light design for steady heat conduction using multi-material.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 359-366 (in Chinese))
    [11] 王选, 胡平, 祝雪峰等. 考虑结构自重的基于NURBS插值的3D拓扑描述函数法. 力学学报, 2016, 48(4): 1437-1445
    [11] (Wang Xuan, Hu Ping, Zhu Xuefeng, et al.Topology description function approach using NURBS interpolation for 3Dstructures with self-weight loads.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 1437-1445 (in Chinese))
    [12] 隋允康, 彭细荣. 求解一类可分离凸规划的对偶显式模型DP-EM方法. 力学学报, 2017, 49(3):1135-1144
    [12] (Sui Yunkang, Peng Xirong.A dual explicit model based DPEM method for solving a class of separable convex programming.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 1135-1144 (in Chinese))
    [13] 陈文炯, 刘书田, 张永存. 基于拓扑优化的自发热体冷却用植入式导热路径设计方法. 力学学报, 2016, 48(1): 406-412
    [13] (Chen Wenjiong, Liu Shutian, Zhang Yongcun.Optimization design of conductive pathways for cooling a heat generating body with high conductive inserts.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 406-412 (in Chinese))
    [14] Guo X, Zhang WS, Zhang J, et al.Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons.Computer Methods in Applied Mechanics and Engineering, 2016, 310: 711-748
    [15] Cheng GD, Jiang Z.Study on topology optimization with stress constraints.Engineering Optimization, 1992, 20(1): 129-148
    [16] Cheng GD, Guo X.ε-relaxed approach in structural topology optimization.Structural Optimization, 1997, 13(4): 258-266
    [17] Duysinx P, Bendsoe MP.Topology optimization of continuum structures with local stress constraints.International Journal for Numerical Methods in Engineering, 1998, 43(6): 1453-1478
    [18] Paris J, Navarrina F, Colominas I, et al.Topology optimization of continuum structures with local and global stress constraints.Structural and Multidisciplinary Optimization, 2009, 39(4): 419-437
    [19] Bruggi M, Venini P.A mixed FEM approach to stress-constrained topology optimization.International Journal for Numerical Methods in Engineering, 2008, 73(10): 1693-1714
    [20] Verbart A, Langelaar M, Van Keulen F.A unified aggregation and relaxation approach for stress-constrained topology optimization.Structural and Multidisciplinary Optimization, 2017, 55(1): 663-679
    [21] Holmberg E, Torstenfelt B, Klarbring A.Stress constrained topology optimization.Structural and Multidisciplinary Optimization, 2013, 48(1): 33-47
    [22] Rong JH, Xiao TT, Yu LH, et al.Continuum structural topological optimizations with stress constraints based on an active constraint technique.International Journal for Numerical Methods in Engineering, 2016, 108(4): 326-360
    [23] Le C, Norato J, Bruns T, et al.Stress-based topology optimization for continua.Structural and Multidisciplinary Optimization, 2010, 41(4): 605-620
    [24] Yang RJ, Chen CJ.Stress-based topology optimization.Structural Optimization, 1996, 12(2-3): 98-105
    [25] Luo YJ, Kang Z.Topology optimization of continuum structures with Drucker-Prager yield stress constraints.Computers and Structures, 2012, 90: 65-75
    [26] Luo YJ, Wang MY, Kang Z.An enhanced aggregation method for topology optimization with local stress constraints.Computer Methods in Applied Mechanics and Engineering, 2013, 254: 31-41
    [27] Paris J, Navarrina F, Colominas I, et al.Block aggregation of stress constraints in topology optimization of structures.Advances in Engineering Software, 2010, 41(2): 433-441
    [28] Cai SY, Zhang WH.Stress constrained topology optimization with free-form design domains.Computer Methods in Applied Mechanics and Engineering, 2015, 289: 267-290
    [29] Wang MY, Li L.Shape equilibrium constraint: A strategy for stress-constrained structural topology optimization.Structural and Multidisciplinary Optimization, 2013, 47(2): 335-352
    [30] Zhou MD, Sigmund O.On fully stressed design and p-norm measures in structural optimization.Structural and Multidisciplinary Optimization, 2017, 56(2): 731-736
    [31] Guo X, Zhang WS, Zhong W.Stress-related topology optimization of continuum structures involving multi-phase materials.Computer Methods in Applied Mechanics and Engineering, 2014, 268: 632-655
    [32] Xia Q, Shi T, Liu S, et al.A level set solution to the stress-based structural shape and topology optimization.Computers and Structures, 2012, 90: 55-64
    [33] Guo X, Zhang WS, Wang MY, et al.Stress-related topology optimization via level set approach.Computer Methods in Applied Mechanics and Engineering, 2011, 200(47): 3439-3452
    [34] Cai SY, Zhang WH, Zhu JH, et al.Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function.Computer Methods in Applied Mechanics and Engineering, 2014, 278: 361-387
    [35] 隋允康, 张学胜, 龙连春. 应力约束处理为应变能集成的连续体结构拓扑优化. 计算力学学报, 2007, 24(3): 602-608
    [35] (Sui Yunkang, Zhang Xuesheng, Long Lianchun.The ICM method of structural topology optimization with stress constraints approached by the integration of strain energies. Chinese Journal of Computational Mechanics, 2007, 24(3): 602-608 (in Chinese))
    [36] 隋允康, 边炳传. 屈曲与应力约束下连续体结构的拓扑优化. 工程力学, 2008, 25(6): 6-12
    [36] (Sui Yunkang, Bian Binchuan.Topology optimization of continuum structures under bucking and stress constraints.Engineering Mechanics, 2008, 25(6): 6-12 (in Chinese))
    [37] 隋允康,铁军.结构拓扑优化ICM显式化与抛物型凝聚函数对于应力约束的集成化. 工程力学, 2010, 27(增刊I): 224-237
    [37] (Sui Yunkang, Tie Jun.The ICM explicitation approach to structural topology optimization and the integrating approach to stress constraints based on the parabolic aggregation function.Engineering Mechanics, 2010, 27(Sup. issue I): 224-237 (in Chinese))
    [38] 隋允康, 叶红玲. 连续体结构拓扑优化的ICM方法. 北京:科学出版社, 2013
    [38] (Sui Yunkang, Ye Hongling.Continuum Topology Optimization Methods ICM. Beijing: Science Press, 2013 (in Chinese))
    [39] 荣见华, 葛森, 邓果等. 基于位移和应力灵敏度的结构拓扑优化设计. 力学学报, 2009, 41(4): 518-529
    [39] (Rong Jianhua, Ge Sen, Deng Guo, et al.Structural topology optimization based on displacement and stress sensitivity analysis.Chinese Journal of Theoretical Applied Mechanics, 2009, 41(4): 518-529 (in Chinese))
    [40] Munk DJ, Vio GA, Steven GP.Topology and shape optimization methods using evolutionary algorithms: A review.Structural and Multidisciplinary Optimization, 2015, 52(2): 613-631
    [41] Huang X, Xie YM.Evolutionary topology optimization of continuum structures with an additional displacement constraint.Structural and Multidisciplinary Optimization, 2010, 40(1): 409-416
    [42] Huang X, Xie YM.Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method.Finite Elements in Analysis and Design, 2007, 43(12): 1039-1049
    [43] Huang X, Li Y, Zhou SW, et al.Topology optimization of compliant mechanisms with desired structural stiffness.Engineering Structures, 2014, 79: 13-21
计量
  • 文章访问数:  2193
  • HTML全文浏览量:  375
  • PDF下载量:  588
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-21
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回