完整约束多体系统第一类Lagrange方程建模得到的运动方程是指标-3形式的微分-代数方程(differental-algebraic equations,DAEs).如果同时考虑速度约束,将得到超定运动方程,该方程是指标-2的超定微分-代数方程(over-determined differential-algebraic equations,ODAEs).基于结构动力学中常用的广义-α方法,将其拓展,求解包含速度约束的超定运动方程,相对于其他求解指标-2 ODAEs的算法,新的算法没有增加离散得到的非线性方程组方程的数目.通过数值实验验证算法,并说明其求解ODAEs不存在精度降阶的现象,仍然具有二阶精度,同时算法的数值耗散也是可以控制的.最后新方法与其他求解多体系统ODAEs形式运动方程算法的CPU时间进行了比较分析.
2012, 44(5): 948-952.
doi: 10.6052/0459-1879-12-028