本文研究van der Pol-Duffing型的非线性振子在随机干扰和随机参数联合作用下的Hopf分叉现象。本文所得结果证实了当系统处在于Hopf分叉点附近时,对系统的参数的变化具有敏感性。在研究过程中,我们利用Markov扩散过程逼近系统的随机响应,得到了沿稳定矩的概率1稳定和矩稳定的条件。对于非线性振子,我们得到了振幅过程的稳态概论密度函数。研究发现,确定性系统的Hopf分叉点在随机参数作用下具有漂移现象,这种漂移是由系统的性质所决定的,当分叉点为超临界的,分叉点向前漂移;而当分叉点为亚临界时,这种漂移是向后的。当系统处在外部随机干扰作用下时,系统出现非零响应。另外我们发现,稳态矩的分叉与其阶数无关。