EI、Scopus 收录
中文核心期刊

基于改进四阶辛-谱元的三维宽频带地震动数值模拟方法

Improved Fourth-Order Symplectic Spectral Element-Based Method for 3D Broadband Ground Motion Simulation

  • 摘要: 基于确定性物理模型的震源-传播-场地全过程地震动模拟是目前地震工程的重要研究方向,然而随着模拟频率的不断提高对目前数值模拟方法中显示时间积分算法的计算精度和效率提出了双重挑战。本文提出了一种融合四阶PEFRL(Position Extended Forest-Ruth Like)辛积分与谱元法(SEM)的三维高效数值模拟方法,旨在突破现有SEM中在宽频带模拟中精度、稳定性和效率上的瓶颈问题。其中,PEFRL算法通过优化传统Forest-Ruth算法的步进策略,将加速度求解次数由五次降至四次,并采用位移-速度交替更新机制,能够有限降低内存需求与计算成本。本文将提出的方法针对均匀、多层与盆地半空间模型,分别与二阶的Newmark和四阶的Runge-Kutta时间积分算法计算的结果进行对比。数值实验表明,随着模型复杂和模拟频率的上升,改进后的PEFRL-SEM方法精度提升效果愈加显著。针对半空间模型、多层介质模型与盆地模型模拟的时程结果相位相对误差降低分别降低16.7%、20.7%和21.3%,能量相对误差分别降低20.6%、22.3%和24.7%;针对10Hz半空间模型模拟工况,相位相对误差和能量相对误差分别降低55.4%和36.3%,计算效率较LDDRK算法最高可提升约33%。进一步,将该方法成功应用于1994年北岭MW6.7地震的三维宽频带(0-10 Hz)地震动模拟,模拟结果与观测记录在振幅及频谱特征上均表现出良好一致性。该方法有效解决了宽频带地震动模拟的稳定性与计算效率的问题,显著提升了宽频带强地震动模拟在地震工程领域的实用性,为区域地震危险性分析与工程抗震评估提供了一种高精度、高效率的宽频带地震动模拟方法。

     

    Abstract: Source-to-site seismic motion simulation based on deterministic physics-based models constitutes a critical research frontier in earthquake engineering, while the expanding frequency bandwidth requirements impose dual challenges on both computational accuracy and efficiency of explicit time integration schemes in contemporary numerical simulations. This study develops a three-dimensional high-performance numerical scheme integrating fourth-order PEFRL (Position Extended Forest-Ruth Like) symplectic integration with spectral element method (SEM), designed to overcome the inherent limitations in accuracy, stability, and computational efficiency for broadband simulations within conventional SEM frameworks. The PEFRL algorithm innovatively refines the stepping protocol of con-ventional Forest-Ruth methods by reducing acceleration computations from quintuple to quadruple evaluations per timestep, complemented by a displacement-velocity staggered update paradigm that strategically optimizes memory allocation and computational expenditure. Benchmark evaluations against conventional second-order Newmark and fourth-order Runge-Kutta time integrators have been conducted across three distinct geological configurations: homogeneous, layered medium, and basin half-space models. Numerical validations reveal the enhanced PE-FRL-SEM's superior performance across four critical scenarios: half-space models demonstrate 16.7% phase error reduction and 20.6% energy error reduction, high-frequency source conditions achieve 55.4% and 36.3% im-provements, layered media show 20.7% and 22.3% enhancements, while basin models exhibit 21.3% and 24.7% error mitigation, accompanied by 33% computational acceleration relative to LDDRK benchmarks. Subsequently, the method was successfully applied to simulate three-dimensional broadband (0-10 Hz) ground motions for the 1994 Northridge MW6.7 earthquake. The simulation results exhibit excellent agreement with observations in terms of both amplitude and spectral characteristics. This methodology successfully reconciles the stability-efficiency paradox in broadband seismic field simulation, substantially advances the engineering applicability of strong ground motion prediction, and establishes a robust computational paradigm for regional seismic risk assessment and struc-ture-specific anti-seismic evaluations.

     

/

返回文章
返回