EI、Scopus 收录
中文核心期刊

激光冲击钛合金微裂纹愈合及力学行为的分子动力学模拟

俎群, 张恒, 查斯鑫, 刘硕, 亓新新, 赵丽滨

俎群, 张恒, 查斯鑫, 刘硕, 亓新新, 赵丽滨. 激光冲击钛合金微裂纹愈合及力学行为的分子动力学模拟. 力学学报, 2025, 57(3): 712-719. DOI: 10.6052/0459-1879-24-519
引用本文: 俎群, 张恒, 查斯鑫, 刘硕, 亓新新, 赵丽滨. 激光冲击钛合金微裂纹愈合及力学行为的分子动力学模拟. 力学学报, 2025, 57(3): 712-719. DOI: 10.6052/0459-1879-24-519
Zu Qun, Zhang Heng, Zha Sixin, Liu Shuo, Qi Xinxin, Zhao Libin. Molecular dynamics simulation of microcrack healing in titanium alloy under laser shock. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 712-719. DOI: 10.6052/0459-1879-24-519
Citation: Zu Qun, Zhang Heng, Zha Sixin, Liu Shuo, Qi Xinxin, Zhao Libin. Molecular dynamics simulation of microcrack healing in titanium alloy under laser shock. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 712-719. DOI: 10.6052/0459-1879-24-519
俎群, 张恒, 查斯鑫, 刘硕, 亓新新, 赵丽滨. 激光冲击钛合金微裂纹愈合及力学行为的分子动力学模拟. 力学学报, 2025, 57(3): 712-719. CSTR: 32045.14.0459-1879-24-519
引用本文: 俎群, 张恒, 查斯鑫, 刘硕, 亓新新, 赵丽滨. 激光冲击钛合金微裂纹愈合及力学行为的分子动力学模拟. 力学学报, 2025, 57(3): 712-719. CSTR: 32045.14.0459-1879-24-519
Zu Qun, Zhang Heng, Zha Sixin, Liu Shuo, Qi Xinxin, Zhao Libin. Molecular dynamics simulation of microcrack healing in titanium alloy under laser shock. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 712-719. CSTR: 32045.14.0459-1879-24-519
Citation: Zu Qun, Zhang Heng, Zha Sixin, Liu Shuo, Qi Xinxin, Zhao Libin. Molecular dynamics simulation of microcrack healing in titanium alloy under laser shock. Chinese Journal of Theoretical and Applied Mechanics, 2025, 57(3): 712-719. CSTR: 32045.14.0459-1879-24-519

激光冲击钛合金微裂纹愈合及力学行为的分子动力学模拟

基金项目: 国家自然科学基金资助项目(12272120和52331003)
详细信息
    通讯作者:

    俎群, 教授, 主要研究方向为金属激光冲击强化机理、新材料力学行为与结构设计. E-mail: qzu@hebut.edu.cn

    亓新新, 博士后, 主要研究方向为增材金属材料与结构疲劳失效行为和损伤机理. E-mail: xx.qi@hebut.edu.cn

  • 中图分类号: TN249

MOLECULAR DYNAMICS SIMULATION OF MICROCRACK HEALING IN TITANIUM ALLOY UNDER LASER SHOCK

  • 摘要: 钛合金因其优异性能在工程领域应用广泛, 然而在加工及服役过程中不可避免在表面引入微缺陷. 激光冲击可有效实现金属表面损伤修复, 提高钛合金结构器件使用安全性和可靠性. 明确激光冲击钛合金微缺陷愈合机理及力学响应对材料安全服役具有重要意义. 因此, 本文基于Ti-6wt%Al合金, 采用分子动力学(MD)方法对含不同晶向微裂纹模型进行激光冲击模拟. 结果发现, 钛合金塑性变形机制及裂纹愈合过程存在显著的晶体取向效应. 沿[0001]晶向冲击时塑性变形以锥面部分位错和短程的基面层错为主; 沿$[10 \bar{\text{1}}0] $晶向冲击时则以晶体再取向为主, 同时伴随“三明治”夹层结构. 该结构是由原子曳步与间隔基面反向滑移叠加而成, 可兼容冲击方向及其垂直方向的几何变形; 而沿$[10 \bar{\text{1}}1] $晶向冲击时会出现大量同向层错堆积诱导相变. 裂纹愈合则由压应力和位错运动主导, 不同晶向微裂纹愈合时间有所差异. 冲击方向为$ [10\bar{\text{1}}1] $时最易愈合, 此时基面层错最容易在裂纹表面形核堆积. 此外, 对比冲击前后多晶模型的拉伸力学性能及残余应力分布, 裂纹愈合后模型的抗拉强度和应变明显提升, 其两端呈现残余压应力状态, 并进一步探讨了MD模拟与激光冲击的理论关系. 该仿真结果可为激光冲击强化及修复技术实施提供一定理论依据.
    Abstract: Titanium alloy has been widely used in the engineering field due to its excellent properties, however, the microdefects are unavoidable near the surface during the processing and service environment. The laser shock peening technology can effectively repair the surface damage, improving the safety and reliability of titanium alloy. Understanding the microdefect healing mechanism and mechanical response of titanium alloy under the laser shock is of great significance for the material safety in service. Therefore, based on the Ti-6wt%Al alloy, the crack evolution mechanisms with different orientations under the laser shock are studied through the molecular dynamics (MD) simulation. The plastic deformation mechanism of titanium alloy shows the obvious orientation correlation. It is dominated by the partial pyramidal dislocation and short stacking fault (SF) for [0001] orientation model, and the crystalline reorientation accompanied by the “sandwich” structure for $ [10\bar{\text{1}}0] $ orientation model. The structure is superimposed by the atomic shuffling and reverse glide in interval basal plane, which can be compatible with the geometric deformation of impact direction and vertical direction. While for $[10 \bar{\text{1}}1] $ orientation model, the phase transformation is induced by multiple SFs. The healing time of microcracks with different orientations is discrepant, which is closely related to the compression stress and dislocation activation. It is easiest to heal for $[10 \bar{\text{1}}1] $ orientation crack due to the nucleation and accumulation of multiple dislocations on the crack surface. In addition, the tensile mechanical property and residual stress distribution of polycrystalline models before and after impact are comprehensively compared. The tensile strength and the corresponding strain of polycrystalline model after crack healing are significantly improved, and the two ends present the residual compressive stress due to the boundary condition. The theoretical relationship between MD simulation and laser shock is further discussed. The simulation results can provide a theoretical guidance for the laser shock peening and repair technology.
  • 钛合金具有低密度、高强度、耐高温等特点, 在航空航天、机械装备等领域具有广泛应用[1-2]. 然而钛合金在成型、加工及服役过程中不可避免会引入微裂纹及微孔洞等缺陷, 在长期交变载荷作用下这些缺陷往往会成为裂纹萌生扩展的起点, 严重影响钛合金结构器件使用安全性和可靠性[3-6]. 激光冲击强化技术(loser shock processing, LSP)是一种金属表面改性技术, 利用高能脉冲激光诱导冲击波作用于金属表面, 使其产生高应变率(> 106 s−1)塑性变形, 能够有效实现表层微缺陷修复, 进而提高材料力学性能和疲劳寿命[7-12]. Tong等[13]通过对比激光冲击前后TC11钛合金腐蚀层表面形貌, 发现处理后的表面裂纹数量大大减少. Kalentics等[14]采用不同LSP参数对镍基高温合金进行表面处理, 量化了LSP参数对试样体裂纹密度的影响, 在一定作用条件下可实现高达95%的显著降低. 因此, 明确激光冲击钛合金微缺陷愈合机理及力学响应, 对材料安全服役具有重要意义.

    目前, 围绕金属中微裂纹及微孔洞的激光冲击愈合现象开展了大量研究[15-17]. 微缺陷愈合主要归因于残余压应力的引入[18-20]. 然而在压应力作用下缺陷愈合机制、微结构演化行为却尚未明确. 在微纳尺度下, 激光冲击强化机理和作用效果与晶体取向是密切相关的[21-25]. 杜欣等[22]通过对不同方向的单晶高熵合金进行冲击模拟, 发现冲击时弹、塑性双波分离现象, 微结构演化及残余应力分布均具有明显的取向相关性. Zhou等[26]在单晶铝微裂纹愈合模拟中发现裂纹愈合所需的临界温度取决于裂纹面的方向, 相较而言, (111)面裂纹愈合所需临界温度最低. 杨晓悦等[27]探讨了含圆柱孔洞镁合金模型在冲击波作用下孔洞表面位错形核与演化的过程, 揭示了不同取向下的孔洞坍缩机制. 邓小良等[28]探究了金属铜内部双孔洞连线与冲击加载方向不同夹角对沿(100)面冲击加载下双孔洞贯通过程的影响, 夹角为0°和30°时双孔洞之间未发生贯穿, 夹角为60°和90°时双孔洞都出现贯穿现象, 且夹角为60°时更容易贯穿. 常温下钛合金通常为密排六方(hexagonal close-packed, HCP)晶格结构, 晶体各向异性更为显著, 亟待开展激光冲击钛合金微缺陷修复取向效应及力学行为研究.

    分子动力学(molecular dynamics, MD)模拟是一种从经典力学出发, 以原子为基本单位, 基于原子间的相互作用势, 运用统计力学、热力学、计算方法的数值模拟, 主要用于描述原子体系的动/静态特征和运动规律, 是揭示激光冲击金属微组织演化过程及强化机理的有效途径. 因此, 本文基于MD方法, 对含有不同取向微裂纹的HCP相钛铝合金模型进行冲击模拟. 深入探讨裂纹附近缺陷激活、动态演化及愈合行为的取向影响、模型冲击前后的拉伸力学性能, 并对MD冲击与激光冲击理论关系进行讨论.

    本文以HCP相Ti-6wt%Al合金为研究对象探究激光冲击微裂纹演化的晶体取向效应及对力学性能的影响. 如图1所示, 建立了3种晶体取向的分子动力学模型, 晶体取向分别对应x[0001], $y[10 \bar{\text{1}}1] $, $ z[1\bar{\text{2}}10] $; $ x[10\bar{\text{1}}0] $, y[0001], $z[1 \bar{\text{2}}10] $; 以及$ x[10\bar{\text{1}}1] $, y垂直于$(10 \bar{\text{1}}\bar{\text{2}}) $面, $ z[1\bar{\text{2}}10] $.

    图  1  不同晶体取向钛合金冲击模型示意图
    Figure  1.  Shock models of Ti alloy along different crystal orientations

    在确立模型尺寸前, 分别对不同尺寸模型冲击响应进行了初步探索, 重点考虑了xy方向尺寸比例的影响. 研究发现, 保持y方向尺寸不变, 冲击方向尺寸在100 ~ 300 nm范围内的微结构演化行为是相似的, 因此考虑计算资源, 选取了模型尺寸为$ \text{102 nm × 25 nm × 1.8 nm} $来进行详细分析. 根据钛铝合金相图[29], HCP相中Al原子质量分数一般控制在约10%以内. 本文将部分Ti原子随机替换为Al原子, 使其质量分数达到6%. 冲击方向x采取固定边界位移条件, 其他方向均为周期边界条件. 预制的微裂纹尺寸均约为$ \text{24 nm × 2 nm × 1.8 nm} $, 距离冲击端与冲击区域连接处10 nm.

    本文基于Lammps程序[25], 通过活塞法[30]进行冲击加载模拟, 即对边界处2 nm原子采用命令使其保持刚性且内应力始终为零, 对其施加初速度500 m/s撞击基体诱导冲击波产生. 采用Zope等[31]提出的EAM势函数来模拟钛铝合金原子间相互作用

    $$ E = \frac{1}{2}\sum\limits_{i,j} {{\phi _{ij}}} \left( {{r_i}_j} \right) + \sum\limits_i {{F_i}} \left( {{\rho _i}} \right) $$ (1)

    其中, E为体系的总能量, $ {{\phi _{ij}}} \left( {{r_i}_j} \right)$为ij原子之间的相互作用势, rijij原子之间的距离, ρii原子所存在环境中的电荷密度, Fi(ρi)为i原子在其他原子组成的环境中的嵌入能. 冲击加载前, 通过Nosé-Hoover方法进行等温调节使体系在300 K的温度下弛豫50 ps, 使体系达到热力学平衡, 时间步长为1 fs. 冲击加载时长控制在5 ps内, 随后进行充分的弛豫, 时长为600 ps. 每隔一定步数记录原子坐标位置等信息, 通过Ovito软件[32], 利用共邻分析法和位错提取法进行微观结构演化可视化.

    不同取向裂纹在冲击作用下的微观结构如图2所示, 冲击方向分别为[0001], $[10 \bar{\text{1}}0] $和$ [10\bar{\text{1}}1] $. 为明确冲击强弱对塑性变形行为的影响, 冲击时间分别控制在3, 4和5 ps. 蓝色原子代表HCP结构, 绿色原子代表面心立方(FCC)结构, 红色原子代表体心立方(BCC)结构, 白色原子代表无序结构. 结果表明冲击作用时间仅影响晶体损伤面积, 并不影响局部变形机制.

    图  2  不同冲击方向及冲击时间下钛合金微观结构
    Figure  2.  Microstructure of Ti alloy under shock along different crystal orientations and impact times

    当冲击方向为[0001]晶向时(图2(a)), 由于冲击波在微裂纹尖端产生的应力集中作用, 基面层错和锥面部分位错在裂纹尖端优先形核. 该基面层错伯格斯矢量为传统的1/3$ [10\bar{\text{1}}0] $, 由于激光冲击加载方向与晶体基面垂直, 其在$ [10\bar{\text{1}}0] $方向的分切应力较小, 层错生长速度受到限制, 多呈现短程状态. 锥面位错相较于基面位错和柱面位错, 伯格斯矢量大, 激活能高, 因此在该取向冲击时以连续的锥面部分位错为主, 滑移面为$ \{10\bar{\text{1}}1\} $面, 原子结构(红框区域)放大如图3(a)所示, 同时在滑移带及微裂纹尖端伴有小部分非晶区域.

    图  3  冲击作用下裂尖附近缺陷
    Figure  3.  Defects near the crack tip under shock

    当冲击方向为$ [10\bar{\text{1}}0] $晶向时(图2(b)), 此时基面与冲击方向平行, 在冲击波作用下微裂纹尖端出现少量基面层错, 微裂纹尖端同时伴有晶粒转向现象. 通过局部原子结构分析可知, 该晶粒转向为一种特殊的晶体再取向行为, 即基体的基面向转向晶粒的柱面转化, 两晶粒界面通常由$ \{10\bar{\text{1}}2\} $孪晶界和基/柱界面交替组成(图3(b)). 该现象在HCP镁的原位实验和原子模拟中均有报道[33-34]. 值得注意的是, 在晶粒转向的同时伴随产生大量“三明治”夹层结构(黑框区域), 局部放大如图4所示, 该结构由单层FCC和单层HCP原子交替堆叠. 结合拓扑结构分析其形成机理, 线原子代表变形前晶体, 实心原子代表变形后晶体. 原子曳步主导晶粒完成转向, 同时原子层2, 3之间及原子层3, 4之间伴随反向的基面滑移, 可兼容冲击方向压缩及其垂直方向拉伸的协调变形, 而不会产生累积的剪切变形.

    图  4  “三明治”夹层结构
    Figure  4.  Sandwich structure

    当冲击方向为$ [10\bar{\text{1}}1] $晶向时(图2(c)), 基面与冲击方向呈现约43°夹角, 该面内分切应力较大, 在活塞与基体交界及微裂纹尖端均有大量基面层错产生. 当冲击作用较大时, 裂尖附近会诱发HCP-FCC相变, 如图5所示, 在相变区与基体间也会存在一定的弯折. HCP-FCC相变是由每间隔两层的同向基面位错堆积而成, 在$ [10\bar{\text{1}}0] $方向产生累积的剪切变形.

    图  5  HCP-FCC相变结构
    Figure  5.  HCP-FCC transformation

    激光冲击结束后, 将模型两端施加固定约束, 在NVE系综下保载弛豫600 ps, 使冲击波在模型内充分传播. 研究发现, 不同冲击时间模型弛豫过程裂纹愈合机理是一致的, 以冲击时间为5 ps的保载弛豫模型为例进行说明.

    图6所示为不同晶向微裂纹愈合过程, 图中0, 1.5, 3.2和4.5 ps是指模型保载弛豫时间. 对于[0001]晶向冲击模型, 在弛豫阶段裂纹附近很难再形成新的锥面位错, 微观组织缺陷以短程的基面位错和局域非晶化为主; 对于$ [10\bar{\text{1}}0] $晶向冲击模型, 随着弛豫时间转向晶粒逐渐生长, 由于裂纹处伴随位错释放应力, 局部非晶化现象较少; 对于$ [10\bar{\text{1}}1] $晶向冲击模型, 大量基面层错被激发、堆叠, 相变区也随之增大. 通过原子结构动态演化分析, 3种模型裂纹愈合主要源于快速冲击引起挤压变形.

    图  6  不同取向微裂纹愈合演化过程
    Figure  6.  Crack healing processes in models with different orientations

    不同晶体取向微裂纹愈合的难易受到冲击时间及位错的影响. 通常, 冲击时间越长, 塑性变形区越大, 弛豫过程中微裂纹愈合越快. 相较而言, $ [10\bar{\text{1}} 1]$晶向裂纹愈合速度要快一些. 当弛豫时间为3.2 ps时, [0001]晶向和$ [10\bar{\text{1}}0] $晶向裂纹均未完全愈合; 当弛豫时间为4.5 ps时, 3种晶向裂纹全部愈合. 此时模型的位错分布如图7所示, 并通过位错提取法统计了位错长度随弛豫时间(0 ~ 4.5 ps)的变化(图8). 对于$ [10\bar{\text{1}}1] $晶向冲击模型, 在冲击后和裂纹愈合过程均保持最多的位错. 同向位错滑移使得在微裂纹表面形成累积错阶, 减小裂纹间距, 加之原子间的范德华力, 从而加速裂纹愈合.

    图  7  不同取向模型中位错分布
    Figure  7.  Dislocation distribution in models with different orientations
    图  8  不同取向模型位错线长度
    Figure  8.  Dislocation length in models with different orientations

    此外, 为探究裂纹愈合与冲击方向的关系, 保持水平加载晶向不变, 构建了不同倾角裂纹模型(α = 0° ~ 90°), 如图9(a)所示. 由于各模型加载取向一致, 在冲击和保载弛豫阶段其塑性变形机理是类似的. 以[0001]晶向加载为例, 冲击速度为500 m/s, 冲击时间为4 ps. 当裂纹长度方向与竖直方向夹角约43°时, 裂纹所在晶体取向为$ [10\bar{\text{1}}1] $, 微裂纹愈合过程如图9(b)和图9(c)所示. 与水平裂纹模型(图6(a))对比, 其塑性变形仍以基面层错和锥面部分位错为主, 然而倾角不同, 不同类型位错比重有所差别, 裂纹愈合速度受到密切影响.

    图  9  倾斜微裂纹愈合演化过程
    Figure  9.  Evolution of inclined microcrack healing

    为了探明裂纹愈合行为对材料力学性能的影响, 我们对裂纹愈合前后的单晶模型进行了拉伸模拟, 发现裂纹愈合后单晶模型屈服强度并未得到提高. 这是由于初始的单晶模型为完美晶体, 理论强度极高. 模型在冲击后, 裂纹虽然愈合但同时引入的大量缺陷, 成为新缺陷的形核源. 通常, 实际材料中包含晶界、位错等多种缺陷. 因此, 我们进一步基于多晶模型, 探究裂纹愈合前后材料拉伸力学性能. 多晶模型尺寸为102 nm × 25 nm × 6 nm, 晶粒取向随机, 裂纹方向沿x方向, 拉伸应变率均为108/s, 采用NVT系统, 环境温度和时间步长等其他模拟参数同第2小节.

    多晶模型在500 m/s的冲击速度及5 ps的冲击时间下, 裂纹同样会发生愈合. 相应的微观结构如图10所示, 在引入基面层错的同时也出现局部晶粒细化现象. 进而, 针对有/无裂纹模型及裂纹愈合模型分别进行拉伸模拟, 由拉伸模拟的应力-应变曲线可知, 无裂纹模型抗拉强度约为2.0 GPa, 拉伸应变约为6.9%; 含裂纹模型抗拉强度与拉伸应变明显降低; 裂纹愈合后模型抗拉强度得到明显改善, 达到2.18 GPa, 拉伸应变提升到7.5%. 可见, 冲击引起裂纹愈合能明显改善材料的拉伸力学性能.

    图  10  多晶模型微观结构及相应应力-应变曲线
    Figure  10.  Microstructure of polycrystalline model and corresponding stress-strain curves

    进一步对比分析了多晶模型冲击前后残余应力分布情况. 模型在NVE系综下进行卸载, 当全局应力水平达到动态平衡时, 残余应力$ {\sigma _{xx}} $沿冲击方向深度的分布曲线如图11所示, 可以发现在模型冲击端和底端附近均表现为残余压应力, 幅值约为0.14 GPa; 中间区域表现为残余拉应力, 幅值约为0.38 GPa. 一方面, 裂纹区域受到冲击后会产生相对较多的位错, 引起更加显著的塑性变形; 另一方面, 可能由于边界约束, 引起冲击波反射, 造成残余应力呈现双向冲击分布效应[22,35].

    图  11  残余应力$ {\sigma _{xx}} $沿深度分布曲线
    Figure  11.  Residual stress $ {\sigma _{xx}} $ along depth distribution curve

    通过MD模拟结果可知, 裂纹愈合行为存在明显的晶体取向效应, 冲击作用强度密切影响裂纹愈合时间及内部损伤程度, 合理地控制激光冲击参数对改善材料性能尤为重要. 活塞速度Up与激光功率密度I0之间关系可表达为[36-37]

    $$ \left.\begin{aligned} & {{U_p} = \frac{{2{\sigma _{{\mathrm{HEL}}}}}}{{3\lambda + 2G}} \left( {\frac{{{P_{\max }}}}{{{\sigma _{{\mathrm{HEL}}}}}} - 1} \right) \frac{L}{{{\Delta }t}}} \\ & {{P_{\max }} = 0.01 \sqrt {Z{I_0}} \sqrt { {\frac{\alpha }{{2\alpha + 3}}} } } \end{aligned}\right\} $$ (2)

    其中, Up为活塞的速度, G为剪切模量, λ为材料的Lame常数, σHEL为钛铝合金材料的Hugoniot弹性极限, Pmax为冲击波的峰值压力, L为钛铝合金纳米模型沿Up方向的标定长度, $\Delta t $为时间增量, I0为激光的功率密度, Z为约束层与靶材之间的折合声阻抗, α为用于激光诱导等离子体内能系数.

    本文利用活塞速度Up为500 m/s, 对不同晶体取向的钛合金冲击加载, 并选用3, 4和5 ps的活塞加载时间, 此时假设采用1 ~ 2 mm厚水层作为约束层, 厚度为0.12 mm的铝箔作为吸收层, 激光诱导等离子体内能系数α = 0.2[38], 根据式(2)中Fabbro提出的激光诱导冲击波理论公式可得冲击波压力峰值分别约为4.326, 5.171和6.018 GPa, 则激光的功率密度分别约为7.024, 7.679和8.284 GW/cm2, 该分析可为激光冲击强化实验参数选择提供一定理论依据.

    本文采用MD方法对含微裂纹的Ti-6wt%Al合金进行了冲击模拟, 重点探究了不同晶向对钛合金塑性变形机理、裂纹愈合演化的影响, 进一步基于多晶模型对比了裂纹愈合前后模型的拉伸力学性能及残余应力分布, 讨论了MD模拟与激光冲击的理论关系. 在冲击加载阶段, 对于[0001]晶向模型, 塑性变形机制主要由裂纹周围晶格畸变诱发的短程层错和连续的锥面部分位错主导; 对于$ [10\bar{\text{1}}1] $晶向模型, 则由大量基面层错堆积导致HCP-FCC相变; 而对于$ [10\bar{\text{1}}0] $晶向模型, 除产生传统的基面层错外, 主要激发晶粒转向, 同时伴有“三明治”夹层结构. 该夹层结构由单层HCP和FCC结构交替组成, 由原子曳步和间隔基面反向滑移协同形成. 在保载弛豫阶段, 由于冲击波作用裂纹逐渐愈合. 裂纹愈合机制主要与压应力及位错运动有关. $ [10\bar{\text{1}}1] $晶向加载时裂纹最易愈合, 该取向下基面层错最容易激活; 而[0001]晶向加载时, 基面滑移受到约束, 锥面位错激活困难; $ [10\bar{\text{1}}1] $晶向加载时界面运动释放应力, 位错也相对较少. 从多晶模型拉伸模拟中可知裂纹愈合能明显地恢复材料抗拉强度. 进一步建立了MD冲击参数与激光功率密度的关系, 为激光冲击钛合金表面修复提供一定理论指导.

  • 图  1   不同晶体取向钛合金冲击模型示意图

    Figure  1.   Shock models of Ti alloy along different crystal orientations

    图  2   不同冲击方向及冲击时间下钛合金微观结构

    Figure  2.   Microstructure of Ti alloy under shock along different crystal orientations and impact times

    图  3   冲击作用下裂尖附近缺陷

    Figure  3.   Defects near the crack tip under shock

    图  4   “三明治”夹层结构

    Figure  4.   Sandwich structure

    图  5   HCP-FCC相变结构

    Figure  5.   HCP-FCC transformation

    图  6   不同取向微裂纹愈合演化过程

    Figure  6.   Crack healing processes in models with different orientations

    图  7   不同取向模型中位错分布

    Figure  7.   Dislocation distribution in models with different orientations

    图  8   不同取向模型位错线长度

    Figure  8.   Dislocation length in models with different orientations

    图  9   倾斜微裂纹愈合演化过程

    Figure  9.   Evolution of inclined microcrack healing

    图  10   多晶模型微观结构及相应应力-应变曲线

    Figure  10.   Microstructure of polycrystalline model and corresponding stress-strain curves

    图  11   残余应力$ {\sigma _{xx}} $沿深度分布曲线

    Figure  11.   Residual stress $ {\sigma _{xx}} $ along depth distribution curve

  • [1] 陆莹, 赵吉宾, 乔红超等. TC17钛合金激光冲击温强化机制的研究. 表面技术, 2018, 47(2): 1-7 (Lu Ying, Zhao Jibin, Qiao Hongchao, et al. Strengthening mechanism of TC17 titanium alloy warm laser shock peening. Surface Technology, 2018, 47(2): 1-7 (in Chinese)

    Lu Ying, Zhao Jibin, Qiao Hongchao, et al. Strengthening mechanism of TC17 titanium alloy warm laser shock peening. Surface Technology, 2018, 47(2): 1-7 (in Chinese)

    [2] 西禹, 张强, 张欣钥等. 增材制造TC4钛合金的动态力学行为研究. 力学学报, 2022, 54(2): 425-444 (Xi Yu, Zhang Qiang, Zhang Xinyue, et al. Dynamic mechanical behavior of additive manufacturing TC4 alloy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444 (in Chinese)

    Xi Yu, Zhang Qiang, Zhang Xinyue, et al. Dynamic mechanical behavior of additive manufacturing TC4 alloy. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 425-444 (in Chinese)

    [3] 李东霖, 何卫锋, 游熙等. 激光冲击强化提高外物打伤TC4钛合金疲劳强度的试验研究. 中国激光, 2016, 43(7): 0702006 (Li Donglin, He Weifeng, You Xi, et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening. Chinese Journal of Lasers, 2016, 43(7): 0702006 (in Chinese) doi: 10.3788/CJL201643.0702006

    Li Donglin, He Weifeng, You Xi, et al. Experimental research on improving fatigue strength of wounded TC4 titanium alloy by laser shock peening. Chinese Journal of Lasers, 2016, 43(7): 0702006 (in Chinese) doi: 10.3788/CJL201643.0702006

    [4] 牛洋洋, 李统, 周文博等. 增材制造Ti6Al4V钛合金的激波压缩状态方程与动态变形机理研究. 力学学报, 2023, 55(8): 1673-1685 (Niu Yangyang, Li Tong, Zhou Wenbo, et al. Shock compression equation of state and dynamic deformation mechanism of additive manufactured Ti6Al4V titanium alloy. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1673-1685 (in Chinese)

    Niu Yangyang, Li Tong, Zhou Wenbo, et al. Shock compression equation of state and dynamic deformation mechanism of additive manufactured Ti6Al4V titanium alloy. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(8): 1673-1685 (in Chinese)

    [5] 刘小宇, 张慧梅, 杨政. 考虑局部损伤区变化的能量平衡尺寸效应模型. 力学学报, 2024, 56(1): 157-172 (Liu Xiaoyu, Zhang Huimei, Yang Zheng. Energy balance size effect model considering the variation of local damage zone. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 157-172 (in Chinese)

    Liu Xiaoyu, Zhang Huimei, Yang Zheng. Energy balance size effect model considering the variation of local damage zone. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 157-172 (in Chinese)

    [6] 洪友士. 再论超高周疲劳裂纹萌生特征区. 力学学报, 2022, 54(8): 2101-2118 (Hong Youshi. Further exploration on characteristic region of crack initiation tor very-high-cycle fatigue, Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2101-2118 (in Chinese)

    Hong Youshi. Further exploration on characteristic region of crack initiation tor very-high-cycle fatigue, Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(8): 2101-2118 (in Chinese)

    [7]

    Tian Q, Zhou JZ, Huang S, et al. Relaxation of residual stress on laser-peened surface during cyclic loading. Laser & Optoelectronics Progress, 2014, 51(8): 081403

    [8]

    Hua L, Tian W, Liao W, et al. Study of thermal-mechanical coupling behavior in laser cladding. Laser & Optoelectronics Progress, 2014, 51(9): 091401

    [9]

    Li YH, Zhou LC, He WF, et al. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperature. Science and Technology of Advanced Materials, 2013, 14(5): 1574-1578

    [10] 田增, 何卫峰, 周留成等. 激光冲击强化对TC4钛合金缺口叶片疲劳强度的影响. 表面技术, 2022, 51(10): 30-37, 9 (Tian Zeng, He Weifeng, Zhou Liucheng, et al. Effect of laser shock peening on fatigue strength of TC4 titanium alloy notched blade. Surface Technology, 2022, 51(10): 30-37, 9 (in Chinese)

    Tian Zeng, He Weifeng, Zhou Liucheng, et al. Effect of laser shock peening on fatigue strength of TC4 titanium alloy notched blade. Surface Technology, 2022, 51(10): 30-37, 9 (in Chinese)

    [11] 陈雪鹏, 张凌峰, 熊毅等. 激光冲击强化对激光增材制造TC4钛合金组织和性能的影响. 中国激光, 2022, 49(16): 1602017 (Chen Xuepeng, Zhang Lingfeng, Xiong Yi, et al. Effect of laser shock peening on microstructure and properties of laser additive manufactured TC4 titanium alloy. Chinese Journal of Lasers, 2022, 49(16): 1602017 (in Chinese) doi: 10.3788/CJL202249.1602017

    Chen Xuepeng, Zhang Lingfeng, Xiong Yi, et al. Effect of laser shock peening on microstructure and properties of laser additive manufactured TC4 titanium alloy. Chinese Journal of Lasers, 2022, 49(16): 1602017 (in Chinese) doi: 10.3788/CJL202249.1602017

    [12] 刘亚鹏, 史志俊, 赵一昭等. 激光冲击与喷丸复合强化对TC4钛合金细节疲劳额定强度截止值DFRcutoff的影响. 中国激光, 2020, 47(5): 0502006 (Liu Yapeng, Shi Zhijun, Zhao Yizhao, et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening. Chinese Journal of Lasers, 2020, 47(5): 0502006 (in Chinese) doi: 10.3788/CJL202047.0502006

    Liu Yapeng, Shi Zhijun, Zhao Yizhao, et al. Cut-off value of detail fatigue rated strength of TC4 titanium alloy with compound strengthening treatment by laser shock peening and shot peening. Chinese Journal of Lasers, 2020, 47(5): 0502006 (in Chinese) doi: 10.3788/CJL202047.0502006

    [13]

    Tong ZP, Ren XD, Ren YP, et al. Effect of laser shock peening on microstructure and hot corrosion of TC11 alloy. Surface and Coatings Technology, 2018, 335: 32-40 doi: 10.1016/j.surfcoat.2017.12.003

    [14]

    Kalentics N, Sohrabi N, Tabasi HG, et al. Healing cracks in selective laser melting by 3D laser shock peening. Additive Manufacturing, 2019, 30: 100881 doi: 10.1016/j.addma.2019.100881

    [15] 聂祥樊, 李应红, 何卫锋等. 航空发动机部件激光冲击强化研究进展与展望. 机械工程学报, 2021, 57(16): 293-305 (Nie Xiangfan, Li Yinghong, He Weifeng, et al. Research progress and prospect of laser shock peening technology in aero-engine components. Journal of Mechanical Engineering, 2021, 57(16): 293-305 (in Chinese)

    Nie Xiangfan, Li Yinghong, He Weifeng, et al. Research progress and prospect of laser shock peening technology in aero-engine components. Journal of Mechanical Engineering, 2021, 57(16): 293-305 (in Chinese)

    [16] 王志龙, 罗开玉, 刘月等. 超高应变率力学效应下多晶铜的微观塑性变形分子动力学模拟. 中国激光, 2015, 42(7): 0703005 (Wang Zhilong, Luo Kaiyu, Liu Yue, et al. Molecular dynamics simulation of plastic deformation of polycrystalline Cu under mechanical effect with ultrahigh strain rate. Chinese Journal of Lasers, 2015, 42(7): 0703005 (in Chinese) doi: 10.3788/CJL201542.0703005

    Wang Zhilong, Luo Kaiyu, Liu Yue, et al. Molecular dynamics simulation of plastic deformation of polycrystalline Cu under mechanical effect with ultrahigh strain rate. Chinese Journal of Lasers, 2015, 42(7): 0703005 (in Chinese) doi: 10.3788/CJL201542.0703005

    [17] 何卫锋, 李翔, 聂祥樊等. 钛合金薄壁构件激光冲击残余应力稳定性研究. 金属学报, 2018, 54(3): 411-418 (He Weifeng, Li Xiang, Nie Xiangfan, et al. Study on stability of residual stress induced by laser shock processing in titanium alloy thin-components. Acta Metallurgica Snica, 2018, 54(3): 411-418 (in Chinese)

    He Weifeng, Li Xiang, Nie Xiangfan, et al. Study on stability of residual stress induced by laser shock processing in titanium alloy thin-components. Acta Metallurgica Snica, 2018, 54(3): 411-418 (in Chinese)

    [18] 蒋聪盈, 黄露, 王婧辰等. TC4钛合金激光冲击强化与喷丸强化的残余应力模拟分析. 表面技术, 2016, 45(4): 5-9, 52 (Jiang Congying, Huang Lu, Wang Jingchen, et al. Simulation analysis of the residual stress field of TC4 Ti alloy under laser shock peening and shot peening. Surface Technology, 2016, 45(4): 5-9, 52 (in Chinese)

    Jiang Congying, Huang Lu, Wang Jingchen, et al. Simulation analysis of the residual stress field of TC4 Ti alloy under laser shock peening and shot peening. Surface Technology, 2016, 45(4): 5-9, 52 (in Chinese)

    [19] 罗密, 罗开玉, 王庆伟等. 激光冲击7075-T6铝合金焊缝的残余应力场数值模拟. 光学学报, 2014, 34(4): 0414003 (Luo Mi, Luo Kaiyu, Wang Qingwei, et al. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding. Acta Optica Sinica, 2014, 34(4): 0414003 (in Chinese) doi: 10.3788/AOS201434.0414003

    Luo Mi, Luo Kaiyu, Wang Qingwei, et al. Numerical simulation of laser shock peening on residual stress field of 7075-T6 aluminum alloy welding. Acta Optica Sinica, 2014, 34(4): 0414003 (in Chinese) doi: 10.3788/AOS201434.0414003

    [20] 刘波, 罗开玉, 吴刘军等. 激光冲击强化对AM50镁合金性能和结构的影响. 光学学报, 2016, 36(8): 0814003 (Liu Bo, Luo Kaiyu, Wu Liujun, et al. Effect of laser shock processing on property and microstructure of AM50 magnesium alloy. Acta Optica Sinica, 2016, 36(8): 0814003 (in Chinese) doi: 10.3788/AOS201636.0814003

    Liu Bo, Luo Kaiyu, Wu Liujun, et al. Effect of laser shock processing on property and microstructure of AM50 magnesium alloy. Acta Optica Sinica, 2016, 36(8): 0814003 (in Chinese) doi: 10.3788/AOS201636.0814003

    [21] 何智, 胡洋, 曲宏韬等. 超声冲击电弧增材制造钛合金零件的各向异性研究. 航天制造技术, 2016, 200(6): 11-16 (He Zhi, Hu Yang, Qu Hongtao, et al. Research on anisotropy of titanium alloy manufactured by ultrasonic impact treatment and wire and arc additive manufacture. Aerospace Manufacturing Technology, 2016, 200(6): 11-16 (in Chinese)

    He Zhi, Hu Yang, Qu Hongtao, et al. Research on anisotropy of titanium alloy manufactured by ultrasonic impact treatment and wire and arc additive manufacture. Aerospace Manufacturing Technology, 2016, 200(6): 11-16 (in Chinese)

    [22] 杜欣, 熊启林, 周留成等. 激光冲击下CoCrFeMnNi高熵合金微观塑性变形的分子动力学模拟. 力学学报, 2021, 53(12): 3331-3340 (Du Xin, Xiong Qilin, Zhou Liucheng, et al. Microplastic deformation of CoCrFeMnNi high-entropy alloy under laser shock: A molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3331-3340 (in Chinese)

    Du Xin, Xiong Qilin, Zhou Liucheng, et al. Microplastic deformation of CoCrFeMnNi high-entropy alloy under laser shock: A molecular dynamics simulation. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(12): 3331-3340 (in Chinese)

    [23]

    Zu Q, Guo YF, Xu S, et al. Molecular dynamics simulations of the orientation effect on the initial plastic deformation of magnesium single crystals. Acta Metallurgica Sinica (English Letters), 2016, 29(3): 301-312 doi: 10.1007/s40195-015-0353-2

    [24] 米星宇, 钟政, 蒋招绣等. 高应变率加载下FCC金属晶体取向对孔洞增长的影响. 高压物理学报, 2023, 37(2): 79-91 (Mi Xingyu, Zhong Zheng, Jiang Zhaoxiu, et al. Effect of FCC metal crystal orientation on void growth under high strain rate loading. Chinese Journal of High Pressure Physics, 2023, 37(2): 79-91 (in Chinese)

    Mi Xingyu, Zhong Zheng, Jiang Zhaoxiu, et al. Effect of FCC metal crystal orientation on void growth under high strain rate loading. Chinese Journal of High Pressure Physics, 2023, 37(2): 79-91 (in Chinese)

    [25]

    Ge MZ, Xiang JY. Effect of laser shock peening on microstructure and fatigue crack growth rate of AZ31B magnesium alloy. Journal of Alloys and Compounds, 2016, 680: 544-552 doi: 10.1016/j.jallcom.2016.04.179

    [26]

    Zhou GH, Gao KW, Qiao LJ, et al. Atomistic simulation of microcrack healing in aluminium. Modelling Simul. Mater. Sci. Eng., 2000, 8: 603-609 doi: 10.1088/0965-0393/8/4/313

    [27] 杨晓悦, 徐爽, 刘立胜. 冲击波诱发含孔Mg-3Al-1Zn合金位错形核及演化行为研究. 力学学报, 2022, 54(9): 2460-2471 (Yang Xiaoyue, Xu Shuang, Liu Lisheng. Shock-induced dislocation nucleation and evolution in MG-3Al-1Zn alloy with initial void. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2460-2471 (in Chinese)

    Yang Xiaoyue, Xu Shuang, Liu Lisheng. Shock-induced dislocation nucleation and evolution in MG-3Al-1Zn alloy with initial void. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 2460-2471 (in Chinese)

    [28] 邓小良, 祝文军, 宋振飞等. 冲击加载下孔洞贯通的微观机理研究. 物理学报, 2009, 58(7): 4772-4778 (Deng Xiaoliang, Zhu Wenjun, Song Zhenfei, et al. Study on the microscopic mechanism of perforation under impact loading. Acta Physica Sinica, 2009, 58(7): 4772-4778 (in Chinese) doi: 10.7498/aps.58.4772

    Deng Xiaoliang, Zhu Wenjun, Song Zhenfei, et al. Study on the microscopic mechanism of perforation under impact loading. Acta Physica Sinica, 2009, 58(7): 4772-4778 (in Chinese) doi: 10.7498/aps.58.4772

    [29]

    Witusiewicz VT, Bondar AA, Hecht U, et al. The Al-B-Nb-Ti system: III. Thermodynamic re-evaluation of the constituent binary system Al-Ti. Journal of Alloys and Compounds, 2008, 45(1-2): 64-77

    [30] 朱熠奇, 殷艳, 周留成等. 激光冲击铝合金微结构演化及力学行为的分子动力学模拟. 表面技术, 2022, 51(11): 1-9, 57, 474 (Zhu Yiqi, Yin Yan, Zhou Liucheng, et al. Microstructure evolution and mechanical behavior of laser-shocked aluminium alloy by molecular dynamics simulations. Surface Technology, 2022, 51(11): 1-9, 57, 474 (in Chinese)

    Zhu Yiqi, Yin Yan, Zhou Liucheng, et al. Microstructure evolution and mechanical behavior of laser-shocked aluminium alloy by molecular dynamics simulations. Surface Technology, 2022, 51(11): 1-9, 57, 474 (in Chinese)

    [31]

    Zope RR, Mishin Y. Interatomic potentials for atomistic simulations of the Ti-Al system. Physical Review B, 2003, 68(2): 366-369

    [32]

    Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 15012

    [33]

    Liu BY, Wang J, Li B, et al. Twinning-like lattice reorientation without a crystallographic twinning plane. Nature Communications, 2014, 5: 3297 doi: 10.1038/ncomms4297

    [34]

    Zu Q, Tang XZ, Xu S, et al. Atomistic study of nucleation and migration of the basal/prismatic interfaces in Mg single crystals. Acta Materialia, 2017, 130: 310-318 doi: 10.1016/j.actamat.2017.03.035

    [35]

    Li W, Chen HT, Huang WY, et al. Effect of laser shock peening on high cycle fatigue properties of aluminized AISI 321 stainless steel. International Journal of Fatigue, 2021, 147(15): 106180

    [36]

    Fabbro R, Fournier J. Ballard P. Physics study of laser-produced plasma in confined geometry. Journal of Applied Physics, 1990, 68(2): 775-784

    [37]

    Meng XK, Zhou JZ, Huang S, et al. Properties of a laser shock wave in Al-Cu alloy under elevated temperatures: A molecular dynamics simulation study. Materials, 2017, 10(1): 73 doi: 10.3390/ma10010073

    [38]

    Devaux D, Fabbro R, Tollier L, et al. Generation of shock waves by laser-induced plasma in confined geometry. Journal of Applied Physics, 1993, 74(4): 2268-2273 doi: 10.1063/1.354710

图(11)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  23
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-13
  • 录用日期:  2024-12-15
  • 网络出版日期:  2024-12-16
  • 发布日期:  2024-12-18
  • 刊出日期:  2025-03-17

目录

/

返回文章
返回