EI、Scopus 收录
中文核心期刊

二尖瓣置换影响左心室流场的体外实验研究

In vitro experimental study on the left ventricular flow of mitral valve replacement

  • 摘要: 二尖瓣置换是指用人工机械瓣或生物瓣替换病变的人体原生瓣膜。本研究探讨了二尖瓣置换术后左心室血流动力学的变化,重点分析了生物瓣和机械瓣对左心室涡流结构和压力分布的影响。我们通过三维层析粒子图像测速技术(Tomo PIV)测量了体外循环模拟平台上的左心室流场;通过基于物理神经网络(PINN)的曲面动边界压力场重构技术计算了不同瓣膜下的左心室压力分布。与原生健康瓣膜的左心室流场对比发现:生物瓣在左心室内形成较完整的涡环结构,舒张期流体运动方向与原生瓣一致。但射流速度和压力差高于原生瓣膜;机械瓣的射流速度和压力差与原生瓣膜一致,但流场结构复杂,舒张期涡流旋转方向与原生瓣膜相反。本研究是对左心室血流动力学的初步探索,对于评估不同瓣膜的血流动力学影响、预测置换手术的长期效果以及潜在的临床并发症具有重要意义。

     

    Abstract: Mitral valve replacement (MVR) serves as a therapeutic intervention wherein a dysfunctional native valve is substituted with either a mechanical or bioprosthetic prosthesis. This investigation systematically examines hemodynamic modifications within the left ventricle (LV) post-MVR, with particular emphasis on differential impacts of bioprosthetic versus mechanical valves on LV vortex formation and pressure dynamics. To simulate physiological LV motion, a 3D-printed silicone LV model was cyclically actuated through compression and expansion phases using an in vitro mock circulatory loop. Three-dimensional intraventricular flow patterns were quantified through tomographic particle image velocimetry (TomoPIV), while a physics-informed neural network (PINN) methodology was implemented for dynamic pressure field reconstruction under moving boundary conditions. Comparative analysis revealed distinct hemodynamic profiles: the bioprosthetic valve generated a more organized diastolic vortex ring that maintained directional congruence with native valve flow patterns, albeit with elevated transvalvular jet velocity (0.93 m/s vs 0.62 m/s) and accentuated pressure gradients. Conversely, the mechanical valve produced flow reversal characterized by counter-rotating vortices and intricate secondary flow structures, despite generating pressure gradients comparable to those observed in the native valve configuration. These findings elucidate fundamental hemodynamic distinctions between prosthetic valve types, providing biomechanical rationale for personalized valve selection and informing future iterations of prosthesis design to optimize ventricular flow dynamics.

     

/

返回文章
返回