EI、Scopus 收录
中文核心期刊

基于GNN和ISPH耦合方法的波浪与结构物相互作用数值模拟研究

NUMERICAL STUDY OF WAVE-STRUCTURE INTERACTIONS BY A HYBRID METHOD COMBINING GNN WITH ISPH

  • 摘要: 波浪与结构物相互作用的研究因其在海洋结构物设计、操作及安全性方面的关键性作用而受到广泛关注。作为一种无网格数值方法,不可压缩光滑粒子流体动力学(ISPH)方法正逐渐成为研究波浪与结构相互作用问题的潜力工具。在传统的ISPH方法中,压力是通过求解压力泊松方程(PPE)获得的,这是整个计算过程最为耗时的部分。本文采用一种图神经网络(GNN)与ISPH相结合的耦合方法(ISPH_GNN)对波浪与结构物相互作用展开数值模拟研究。在ISPH_GNN中,GNN模型用于预测流体压力,取代了传统ISPH方法中的PPE求解过程。本文的一项贡献是揭示了基于相对简单算例生成的数据训练的GNN模型可以有效地应用于相对更复杂的波浪与结构物相互作用问题。具体而言,本文使用结合基于溃坝和液舱晃荡算例数据训练的GNN模型的ISPH_GNN模拟不同的波浪与结构相互作用问题,包括孤立波冲击阶梯结构、规则波冲击水下梯形结构物和规则波与浮式箱体的相互作用。仿真结果显示,ISPH_GNN能够在这些不同场景下均能提供令人满意的模拟结果,展现了其在波浪与结构相互作用问题上的良好泛化能力。本文的另一项重要贡献在于展示了,与传统ISPH方法相比,ISPH_GNN在取得相似甚至略高计算精度的同时,显著提升了压力预测的计算效率,尤其是在处理大规模粒子数的波浪-结构物相互作用仿真时。例如,在包含130万粒子的模拟工况下,ISPH_GNN的压力预测速度提升了多达93倍。本文研究结果突显了ISPH_GNN方法在波浪-结构物相互作用仿真中的巨大潜力,可为海洋工程提供一种更具可扩展性和计算高效性的仿真工具。

     

    Abstract: The study of wave-structure interactions has attracted significant attention due to its crucial role in the design, operation, and safety of marine structures. As a mesh-free numerical method, the Incompressible Smoothed Particle Hydrodynamics (ISPH) method has gradually become a promising tool for simulating wave-structure interactions. In traditional ISPH, pressure is obtained by solving the Pressure Poisson Equation (PPE), which is the most time-consuming part of the entire computational process. In this study, a hybrid method, ISPH_GNN, combining the Graph Neural Network (GNN) with ISPH, is employed to numerically simulate wave-structure interactions. In ISPH_GNN, the GNN model is used to predict fluid pressure, replacing the PPE-solving process in traditional ISPH. One of the contributions of this paper is to demonstrate that a GNN model trained on data generated from relatively simple cases can be effectively applied to more complex wave-structure interaction scenarios. Specifically, ISPH_GNN with a GNN model trained on data from dam-break and sloshing cases, is used to simulate various wave-structure interaction problems, including solitary wave overtopping over a step, regular wave impact on a submerged trapezoidal structure, and the interaction between regular waves and a floating box. The simulation results show that ISPH_GNN provides satisfactory results in these different scenarios, demonstrating its excellent generalization ability in wave-structure interaction problems. Another significant contribution of this paper is to show that ISPH_GNN can significantly improve the computational efficiency of pressure prediction compared to traditional ISPH, especially in large-scale wave-structure interaction simulations with a high number of particles. For example, in a simulation with 1.3 million particles, the pressure prediction speed of ISPH_GNN is enhanced by up to 93 times. These results highlight the great potential of the ISPH_GNN method in wave-structure interaction simulations, offering a more scalable and computationally efficient tool for marine engineering.

     

/

返回文章
返回