基于数据驱动的变体机翼跨声速颤振分析
TRANSONIC FLUTTER ANALYSIS OF MORPHING WING VIA DATA DRIVEN METHOD
-
摘要: 激波运动、流动分离等诱发的跨声速气动非线性效应, 可能会引发变体飞行器的颤振特性随构型显著变化, 导致变体机构的轻量化设计面临严峻挑战. 本文针对后缘变弯度机翼, 提出了基于数据驱动的跨声速气动弹性建模方法, 高效、准确地预测了后缘变弯度角度参变过程的机翼颤振边界. 首先, 发展了基于计算流体动力学技术的变弯度流-固耦合数值模拟方法, 对后缘变弯度机翼的跨声速非定常流动进行高精度模拟, 获得给定激励信号下机翼表面的压力快照数据及气动力响应快照数据. 然后, 利用获得的训练数据, 结合本征正交分解和带控制的动态模式分解方法, 建立能够可靠描述机翼运动和气动载荷分布之间关系的低阶状态空间模型. 最后, 利用所构建的低阶模型, 进行了后缘变弯度机翼的跨声速气动力响应和颤振特性预测. 数值仿真结果表明, 所建立的数据驱动模型能够可靠预测跨声速条件下后缘变弯度过程中机翼的非定常气动力、表面压力分布及颤振边界.Abstract: The transonic aerodynamic nonlinearity induced by shock wave motion and flow separation may significantly change the flutter characteristics of a morphing aircraft during the morphing process. It is a challenge for the lightweight structural design of morphing aircraft. This paper proposes a data-driven transonic aeroelastic modeling method for the wing with morphing flap. The flutter boundary of the morphing wing with discrete change of trailing edge camber can be efficiently and accurately predicted. Firstly, a numerical simulation method based on computational fluid dynamics is developed to simulate the transonic unsteady aerodynamics of the wing with morphing flap. The snapshot data of pressure and aerodynamic response on the wing surface subjected to a given excitation signal is collected. Then, using the obtained training data, a reduced-order state-space model is established based on the combination of proper orthogonal decomposition (POD) and dynamic mode decomposition with control (DMDc). Finally,