EI、Scopus 收录
中文核心期刊

滑移边界力学理论及其壁湍流调控机制综述

Review on the Slip Boundary Theory and its Mechanisms in Wall Turbulence Control

  • 摘要: 流体与固体界面处的边界条件是流体力学研究的核心问题之一。滑移边界深刻影响着边界层的形成和发展,是一种重要的流动控制手段。本文从理论和机理两个角度,回顾了滑移边界从经典低速线性稳态模型到高雷诺数时空耦合模型的发展脉络,揭示了滑移边界研究视角的重要转变:滑移边界从一种数学表观边界条件转变为由多相真实界面构成的复杂多尺度流动系统。首先,从滑移边界理论模型角度,本文梳理Navier线性滑移理论,以及后续基本解叠加法、多尺度等效法、量级分析法等滑移参数确定方法;进而重点探讨了高雷诺数下界面-流动的多相多尺度耦合效应,介绍了时域积分、频域模态分解等非稳态滑移建模方法。其次,从滑移边界流动控制机理角度,归纳了稳态与动态滑移边界在湍流减阻、转捩调节及流动结构调制中的不同机理,突出了时空耦合效应在滑移边界失稳失效的重要作用及其在流动控制中的潜在应用。然而,时空耦合滑移边界的多相多尺度作用机制研究尚不充分,可用于宏观流动预测的时空耦合滑移本构模型尚未建立。未来可以结合模态分解等方法揭示滑移边界壁湍流多相尺度间耦合机制,结合均质化和数据驱动等方法实现滑移本构模型构建和参数识别,发展时空耦合滑移边界的失效抑制策略和主动控制策略,探索其在海洋工程等领域的创新应用。

     

    Abstract: Fluid-solid boundary conditions are one of the core issues in fluid mechanics. As a canonical technique, slip boundaries have been widely applied in flow control. This paper reviews the evolution of slip boundary theory from classical linear steady-state models to high-Reynolds-number spatiotemporal frameworks, revealing its paradigm shift from a mathematical apparent boundary condition to multiscale hydrodynamic systems constituted by multiphase interfaces. Firstly, regarding theoretical modeling of slip boundaries, the linear Navier-slip model and other parameter determination methods are outlined, including fundamental solution superposition, multiscale homogenization, and dimensional analysis. Meanwhile, this paper focuses on the multiphase multiscale coupling effects at high Reynolds numbers, proposing feasible unsteady slip modeling approaches such as time integration and modal decomposition. Secondly, from the perspective of flow control mechanisms, the mechanisms of steady-state and spatiotemporal slip boundaries in turbulent drag reduction, transition delay, and flow structure modulation are discussed, emphasizing the critical role of spatiotemporal coupling effects in slip boundary failure and their potential for flow control. However, Current challenges lie in insufficient understanding of multiphase multiscale interactions in spatiotemporal slip boundaries and the absence of constitutive models for macroscopic flow prediction. Future research should employ modal decomposition to elucidate cross-scale interactions, integrate homogenization and data-driven methods for slip constitutive modeling and parameter identification, and design failure-suppression and active-control strategies for spatiotemporal slip boundaries, exploring innovative applications in marine engineering.

     

/

返回文章
返回