EI、Scopus 收录
中文核心期刊

一类求解不可压Navier-Stokes方程的二阶有限差分格子Boltzmann方法

A class of second-order finite difference lattice Boltzmann methods for solving incompressible Navier-Stokes equations

  • 摘要: 为提高格子Boltzmann (LB)方法在求解不可压Navier-Stokes(N-S)方程时的数值精度与稳定性,本文提出了一类二阶有限差分LB方法。该方法采用三级二阶格式对时间导数进行离散,空间导数的离散则采用二阶中心差分与二阶迎风格式相结合的混合差分格式,通过冯·诺依曼方法分析验证了此类数值方法的稳定性,并通过数值实验测试了模型的准确性。在数值实验中,通过对二维泰勒涡流和二维顶盖驱动方腔流进行数值模拟,定量分析了Courant–Friedrichs–Lewy(CFL)条件数对计算结果的影响。结果表明,本文所提出的第二种格式的数值精度与稳定性最优。此外,采用混合差分格式能有效降低数值耗散与振荡,显著提升数值精度。研究结果还表明,该模型在时间和空间上的收敛精度均为二阶,且相较于单松弛格子Boltzmann方法(BGK-LBM)、多松弛格子Boltzmann方法(MRT-LBM),此方法的误差下降速率更优。本文提出的有限差分格子Boltzmann方法为复杂流动问题的高精度模拟提供了新的数值方法,未来可进一步扩展至非线性对流-扩散方程的数值求解。

     

    Abstract: To enhance the numerical accuracy and stability of the Lattice Boltzmann (LB) method in solving the incompressible Navier-Stokes (N-S) equations, this paper proposes a class of second-order finite-difference LB methods. The method employs a three-stage second-order scheme for discretizing the temporal derivatives, while the spatial derivatives are discretized using a hybrid scheme combining second-order central differences and second-order upwind schemes. The stability of such numerical methods is verified through von Neumann analysis, and the accuracy of the model is tested via numerical experiments. In the numerical experiments, the impact of the Courant–Friedrichs–Lewy (CFL) number on the computational results is quantitatively analyzed by simulating two-dimensional Taylor vortex flow and two-dimensional lid-driven cavity flow. The results indicate that the second scheme proposed in this paper exhibits the best numerical accuracy and stability. Furthermore, the use of the hybrid difference scheme effectively reduces numerical dissipation and oscillations, significantly improving numerical accuracy. The findings also demonstrate that the model achieves second-order convergence accuracy in both time and space, and outperforms the single-relaxation-time Lattice Boltzmann method (BGK-LBM) and the multiple-relaxation-time Lattice Boltzmann method (MRT-LBM) in terms of error reduction rate. The finite-difference Lattice Boltzmann method proposed in this study provides a new numerical approach for high-precision simulation of complex flow problems and can be further extended to the numerical solution of nonlinear convection-diffusion equations in the future.

     

/

返回文章
返回