EI、Scopus 收录
中文核心期刊

致密油多孔介质CO2混相与非混相驱替的改进格子Boltzmann模拟

IMPROVED LATTICE BOLTZMANN SIMULATION OF CO2 MISCIBLE AND IMMISCIBLE DISPLACEMENT IN TIGHT OIL POROUS MEDIA

  • 摘要: 多孔介质中的两相驱替是普遍发生在自然界与工业领域中的物理现象,其中注CO2驱油技术更是非常规能源开发过程中提高原油采收率的常用手段。本文基于多相多组分多松弛时间的格子玻尔兹曼方法,耦合Shan-Chen伪势多相流模型与驱替边界条件,提出一种改进的多相流驱替格子玻尔兹曼方法。以此方法为基础对界面张力、接触角以及CO2在油相中的扩散过程进行了对比验证,并引入佩克莱数,分别建立了扩散系数、佩克莱数与CO2-油相互作用参数之间的定量表征关系。进一步对CO2驱替过程中的部分关键参数进行了模拟分析,并定量评价了不同关键参数影响下的驱替效果。结果表明:对于CO2非混相驱替,毛管数与粘度比的联合作用对CO2突破后的驱替效率影响显著,不同的润湿性会影响非混相驱替效果以及剩余油的分布形态。对于CO2混相驱替,低佩克莱数对应的驱替效率与采收率最低,高佩克莱数会增强驱替不稳定性,导致驱替效率逐步减小。当佩克莱数在1附近,会将分子扩散与粘性流动的协同耦合作用发挥到最大,驱替效率始终保持在较高水平。并且佩克莱数的影响机制具有一定的粘度依赖性,对于不同粘度比,较小的佩克莱数都能有效遏制其所产生的粘性指进现象。相较于CO2非混相驱替方式,混相驱替由于较低的界面张力与原油粘度,在致密油藏的实际开发过程中能够有效提高原油采收率。

     

    Abstract: Two-phase displacement in porous media is a physical phenomenon commonly observed in nature and industrial fields, and CO2 flooding technology is a common means to enhance oil recovery in unconventional energy development. Based on the multiphase, multicomponent, and multiple-relaxation-time lattice Boltzmann method (LBM), this work couples the Shan-Chen pseudopotential multiphase flow model with displacement boundary conditions to propose an improved multiphase flow displacement LBM. Using this method, comparative validations are conducted for interfacial tension, contact angle, and the diffusion process of CO2 in the oil phase. The Péclet number is introduced to establish quantitative characterization relationships among the diffusion coefficient, Péclet number, and CO2-oil interaction parameters. Furthermore, numerical simulations analyze key parameters in the CO2 displacement process and quantitatively evaluate the displacement efficiency under the influence of different key parameters. The results show that for CO2 immiscible displacement, the combined effect of capillary number and viscosity ratio significantly influences the displacement efficiency after CO2 breakthrough, and different wettabilities affect the immiscible displacement effect and the distribution pattern of remaining oil. For CO2 miscible displacement, the displacement efficiency and oil recovery rate are the lowest at a low Péclet number; a high Péclet number enhances displacement instability, leading to a gradual decrease in displacement efficiency. When the Péclet number is around the unity, the synergistic coupling effect of molecular diffusion and viscous flow is maximized, maintaining a high displacement efficiency. The influence mechanism of the Péclet number has certain viscosity dependency: for different viscosity ratios, a smaller Péclet number can effectively suppress the viscous fingering caused by them. Compared with CO2 immiscible displacement, miscible displacement can effectively improve oil recovery in the actual development of tight oil reservoirs due to lower interfacial tension and oil viscosity.

     

/

返回文章
返回